问题描述:
请描述一个有效的算法,使之对给定的实轴上的点集{X1,X2,X3,...,XN},能确定包含所有给定点的最小的单位闭区间集合。
分析:
1) 从点集中取最小的点;
2) 取以该点为左起点的单位闭区间,然后从点集中去掉包含在该单位闭区间的所有点;
3) 重复1)-2),直到所有的点处理完毕;那么2)得到的单位闭区间集合A即为所求;
证明:
I) 从2)中看到,点集中的任意点必定包含在A的某一单位闭区间中,即2)得到的单位闭区间集合A是的问题的一个解;
II) 假设B是一最优解, 那么B中必定有一个单位闭区间包含点集的最小点;
由于 “包含该最小点的单位闭区间能包含的点集中的点” 总是 “以该点为左起点的单位闭区间能包含的点集中的点” 的子集;
所以 用以最小点为左起点的单位闭区间 代替B中包含该最小点的单位闭区间, 得到的新的解不会比B更差,即A也是最优解;