- 博客(205)
- 收藏
- 关注
原创 【RAG】DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router
DeepSieve 通过 分解–路由–反思–融合 四阶段流程,提升多跳 QA 任务效果
2025-09-25 15:00:02
842
原创 【阿里DeepResearch】SailorFog-通过高质量SFT训练具备推理能力的Web Agent
通过高质量sft与rl,提升模型推理能力
2025-09-24 16:52:53
665
原创 【阿里DeepResearch】写作组件WebWeaver详解
详细介绍阿里deepsearch工具中,写作报告组件webweaver的工作流程
2025-09-24 16:27:26
1574
原创 【时序预测-5】FFT、STL、ARIMA频域特征和时序分解
将时间域的信号转换为频率域,揭示数据中隐藏的周期性成分。:任何复杂的时间序列都可以分解为不同频率的正弦波之和。
2025-09-24 15:04:48
241
原创 【时序预测-4】传统算法汇总
'ARIMA': {'优点': ['理论基础强', '可解释性好', '参数少'],'缺点': ['只适合线性', '需要平稳性', '单变量'],'适用': '简单、规律的单变量序列'},'优点': ['处理非线性', '特征工程灵活', '速度快'],'缺点': ['需要手工特征', '短期记忆', '调参复杂'],'适用': '有丰富外部特征的预测任务'},'LSTM': {'优点': ['长期记忆', '自动特征', '处理复杂模式'],
2025-09-24 11:13:55
214
原创 【时序预测-2】特征工程详解
XGBoost天然处理混合类型特征:不需要复杂的预处理保持特征的业务含义:原始特征通常比过度工程化的特征效果更好重点处理数据质量:缺失值、异常值比特征变换更重要让模型自己学习交互:XGBoost会自动发现特征组合规律避免过度标准化:树模型的优势就是对特征尺度不敏感这就是为什么XGBoost在实际应用中如此受欢迎——它能直接处理"脏"数据,不需要繁琐的特征预处理流程。
2025-09-24 11:06:33
376
原创 【大模型-金融】Trading-R1 多阶段课程学习
作者指出,现有方法存在两大缺陷:通用LLM缺乏金融领域的结构化推理能力,而纯量化模型又缺乏可解释性。为此,论文提出了Trading-R1框架,通过一个“由易到难”的三阶段课程学习,结合监督微调(SFT)与强化学习(RL),成功训练出一个4B参数的开源模型,其在回测中表现优于GPT-4.1等闭源巨头。
2025-09-23 15:48:51
869
原创 【多模态】不止数学题!Vision G1 数据筛选+课程学习 提升通用场景推理能力
不止是解数学题!Vision-G1凭借高质量多领域数据,实现通用推理能力飞跃
2025-09-23 12:25:19
816
原创 【RAG】Youtu-GraphRAG
Youtu-GraphRAG 在复杂推理任务上,以最高 90.71% 的Token成本节省,实现了最高 16.62% 的准确率提升,显著超越现有最优方法。
2025-09-18 16:39:41
1162
原创 【智能体】rStar2-Agent 14B推理能力媲美DeepSeek
rStar2-Agent 微软智能体 通过设计强化学习流程,媲美DeepSeek推理能力
2025-09-15 17:59:54
1217
原创 【智能体】Qwen3-14B 通过 Routine 蒸馏,准确率 95.5% 直逼 GPT-4o
通过大模型规划+小模型训练,实现95%场景准确率
2025-09-15 14:55:01
1044
原创 【Agent】自我反思机制
自我反思机制是构建可靠AI Agent的核心能力。通过Self-Refinement、Self-Correction、Self-Reflection和Double-Check四大基础类别,结合Tree of Thoughts、LATS、Reflexion等先进方法,Agent能够在复杂的现实场景中做出更加智能和负责任的决策。随着技术不断发展,我们期待看到更多创新的自我反思机制,进一步提升AI Agent的智能水平和实用价值。
2025-08-22 16:20:06
770
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人