判断无向图是否存在环

如果存在回路,则必存在一个子图,是一个环路。环路中所有顶点的度>=2
n 算法:
     第一步:删除所有度<=1的顶点及相关的边,并将另外与这些边相关的其它顶点的度减一。
     第二步:将度数变为1的顶点排入队列,并从该队列中取出一个顶点重复步骤一。
     如果最后还有未删除顶点,则存在环,否则没有环。
n 算法分析:
            由于有m条边,n个顶点。如果m>=n,则根据图论知识可直接判断存在环路。
    (证明:如果没有环路,则该图必然是k棵树 k>=1。根据树的性质,边的数m = n-kk>=1,所以:m<n
            如果m<n 则按照上面的算法每删除一个度为0的顶点操作一次(最多n次),或每删除一个度为1的顶点(同时删一条边)操作一次(最多m次)。这两种操作的总数不会超过m+n。由于m<n,所以算法复杂度为O(n)
图论中有个定理,如果边数m >= 顶点数n,则必定存在回路
否则,m<n时,就要写程序判断了。

如果有环路,则存在一个子图,构成一条回路,回路上的每个节点的度数>=2,所以,凡是度数<2的
顶点和该回路不搭界,可以迭代地去掉他们。

算法如下:
V = vertex set
E = edge set
设原图为G
初始化V = {G中所有度数小于2的顶点}
定义E(V) 为 与V中的顶点相关的边

while V is not empty
v = Next(V)
delete v and E(v) from G
update G;//改变和v点相连的顶点的度数
将所有去掉v后度数变成<2的顶点加入V
end while

if G if empty
没有回路
else
有回路
具体实现时,V可以是队列

这个算法的复杂度是O(n+m),n是顶点个数,m是边个数,m<n,所以复杂度是O(n)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值