题目:(题目来自:http://www.rqnoj.cn)
题目描述
给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是:
1,3,4,9,10,12,13,…
(该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,
3^0+3^1+3^2,…)
请你求出这个序列的第N项的值(用10进制数表示)。
例如,对于k=3,N=100,正确答案应该是981。
输入格式
输入只有1行,为2个正整数,用一个空格隔开:
k N
(k、N的含义与上述的问题描述一致,且3≤k≤15,10≤N≤1000)。
输出格式
输出为计算结果,是一个正整数(在所有的测试数据中,结果均不超过2.1*10^9)。(整数前不要有空格和其他符号)。
样例输入
样例输出
这是noip的最后一道题,看上去好复杂呀,其实很简单,直接上代码: :)
#include <iostream>
using namespace std;
int main()
{
int m,n,a,jishu;
a=1;
jishu=0;
cin>>m>>n;
while(n!=0)
{
jishu=jishu+ (n&1) * a;
a=a*m;
n>>=1;
}
cout<<jishu<<endl;
//system ("pause");
return 0;
}
全对!
这是noip的最后一道题,看上去好复杂呀,其实很简单,直接上代码: :)
#include <iostream>
using namespace std;
int main()
{
int m,n,a,jishu;
a=1;
jishu=0;
cin>>m>>n;
while(n!=0)
{
jishu=jishu+ (n&1) * a;
a=a*m;
n>>=1;
}
cout<<jishu<<endl;
//system ("pause");
return 0;
}
- 测试点1 Accepted / 1ms / 12252kB
- 测试点2 Accepted / 0ms / 12252kB
- 测试点3 Accepted / 0ms / 12252kB
- 测试点4 Accepted / 6ms / 12252kB
- 测试点5 Accepted / 1ms / 12252kB
- 测试点6 Accepted / 0ms / 12252kB
- 测试点7 Accepted / 0ms / 12252kB
- 测试点8 Accepted / 0ms / 12252kB
- 测试点9 Accepted / 0ms / 12252kB
- 测试点10 Accepted / 1ms / 12252kB