配置Open-R1,评测DeepSeek第三方蒸馏模型的推理性能2

接上文,本地配置Open-R1,用蒸馏量化版本DeepSeek-R1-distill-Qwen跑AIME2024评测失败了。想了半天,把本地的环境全推了是不现实的,配docker又不太方便。翻了翻最近配的4090服务器,发现驱动刚好装了最新的550,能够支持CUDA12.4。

还好,失败了没有恼羞成怒的删了env和代码,赶紧打包放到这台机器上。先是安装CUDA12.4,解压env后,改了几个执行文件中依赖路径问题。激活环境,改了几个包对GLIBC依赖导致的问题,调用torch和vllm就可以了。

又开始跑测试脚本,第一个是解决离线无法下载模型和数据的事情。模型的话,因为之前介绍提到的,已经下载并测试了一般问题回答,因此,直接传到这个机器,修改模型路径MODEL即可。数据的话,要修改到./src/open-r1/evaluation.py中的LightevalTaskConfig中的hf_repo,改成本地路径就行,后面再看怎么传参数进去。按照repo把数据下回来,改好路径。

再次执行测试脚本,终于还是又出错了,RuntimeError: expected scalar type Half but found BFloat16。

MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
MODEL_ARGS="pretrained=$MODEL,dtype=bfloat16,max_model_length=32768,gpu_memory_utilisation=0.8"
OUTPUT_DIR=data/evals/$MODEL

# AIME 2024
TASK=aime24
lighteval vllm $MODEL_ARGS "custom|$TASK|0|0" \
    --custom-tasks src/open_r1/evaluate.py \
    --use-chat-template \
    --output-dir $OUTPUT_DIR

原来是脚本里面的dtype问题,改成half和float16都行。但是,后面要是跑Q8及其他量化模型时,那是不是还是默认要转到float16或者bfloat16?那岂不是,只节省了存储,而不节省计算和带宽。要是性能再不好,那真是特别的好处了。就是到底是32B的Q8还是7B的FP16的权衡了。

模型

AIME2024

@1 [6]

MATH500

@1 [7]

o1-mini [1]63.690.0
DeepSeek-R1-671B [1]79.897.3

DeepSeek-R1-distill-Qwen-1.5B [1]

28.983.9

DeepSeek-R1-distill-Qwen-7B [1]

55.592.8

DeepSeek-R1-distill-Qwen-32B [1]

72.694.3
Open-R1-1.5B [2]-81.2
Open-R1-7B [2]-91.8
Open-R1-32B [2]-95.0
bartowski/DeepSeek-R1-distill-Qwen-1.5B-f16 *23.368.8
bartowski/DeepSeek-R1-distill-Qwen-7B-Q8 *53.392.2
bartowski/DeepSeek-R1-distill-Qwen-32B-Q8 *70.095.6

表中数据来源,如下文献[1]和[2]。*号是编译Open-R1后,利用bartowski [3][4][5]中的蒸馏量化模型,在AIME2024[6]和MATH500[7]进行测试得到的。对比看,1.5B的性能差距是最大的,不知道是不是f16模型的问题?后面还得再check一遍。7B和32B,相比文[1]中的数据比较接近。后面还得再把DeepSeek自己提供的模型都测试一下。从模型大小看,应该是提供的FP16版本。

因此,整体上看,网络上提供的蒸馏模型还是基本可用的。如果是自己用LM studio跑着完,那1.5B模型就基本够用了。再加上,现在知乎、微信等等都接入了DeepSeek,当然这俩都是做的RAG,利用自己的数据,从回答上能明显看出来。同时,DeepSeek app目前也没有出现服务器忙的现象。

接下来,用LM Studio试试其他模型,比如llava,Mistral,Janus,Qwen2.5/-Instruct/-VL。还可以考虑把加载图片结合上DeepSeek-R1做题,以及图像生成模型。

 [1] DeepSeek-AI. DeepSeek_R1_Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. GitHub - deepseek-ai/DeepSeek-R1

[2] https://github.com/huggingface/open-r1

[3] https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF

[4] https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF

[5] https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF

[6] https://huggingface.co/datasets/HuggingFaceH4/aime_2024

[7] HuggingFaceH4/MATH-500 · Datasets at HF Mirror

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值