解决vscode运行tensorflow-gpu报错Could not load dynamic library ‘cudart64_110.dll

文章描述了用户在Anaconda环境下安装了Python3.8、CUDA11.0和cuDNN8.0,并成功使用TensorFlowGPU在命令行prompt中。但在VSCode中,尽管GPU可用性被识别,却因找不到cudart64_110.dll而报错。通过搜索和将Anaconda目录添加到系统环境变量解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行环境:anaconda 2023.07,python3.8,cuda11.0,cudnn8.0

#tensorflow测试代码
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

其中cuda和cudnn均在anaconda中通过conda安装,安装完成tensorflow-gpu后 ,在anaconda prompt中测试tensorflow显示正常,提示cpu和gpu均可用。但到vscode中测试只提示cpu可用,gpu提示报错Could not load dynamic library 'cudart64_110.dll'

网上相关的教程很多,但prompt中运行正常初步判断应该不是所谓的版本问题。通过everything在本地搜索'cudart64_110.dll'等依赖文件,发现在anacona目录下都有,于是将相关目录添加到系统环境变量后解决。

### 关于 CUDA 动态链接库 `cudart64_110.dll` 的解决方案 当遇到虚拟环境中的 `CUDA cudart64_110.dll` 文件丢失或无法找到的情况时,通常是因为系统缺少对应的 CUDA 工具包版本,或者路径配置不正确。以下是详细的分析和解决办法: #### 1. **确认 CUDA 版本匹配** 如果当前使用的 Python 虚拟环境中依赖的是特定的 CUDA 和 cuDNN 版本,则需要确保所安装的 CUDA 驱动与之相适应。例如,在引用中提到应选用 `py3.7_cuda100_cudnn_7_0` 包以适配某些环境设置[^1]。因此,需先核实项目所需的 CUDA 版本。 - 如果目标是支持 CUDA 11.0 (对应文件名中的 `_110`),则应当下载并安装 NVIDIA 提供的 CUDA Toolkit 11.0。 #### 2. **检查本地是否存在所需 DLL** 通过以下方式验证计算机上是否已存在 `cudart64_110.dll`: - 打开命令提示符窗口; - 输入 `where cudart64_110.dll` 查看其位置;如果没有显示任何结果,则表明该文件缺失。 #### 3. **重新安装或更新 CUDA Toolkit** 假如发现上述 DLL 缺失,可以从官方资源页面手动获取相应组件: - 前往[NVIDIA 官方网站](https://developer.nvidia.com/cuda-toolkit-archive),选取适合操作系统的 CUDA Toolkit 11.0 下载链接完成安装过程。 - 此外,也可以单独提取必要动态库至指定目录下(比如 `%CONDA_PREFIX%\Library\bin`\ 或者其他被加入 PATH 环境变量的地方)。 #### 4. **调整环境变量配置** 即使已经具备正确的 CUDA 库文件,仍可能出现加载失败现象。这可能是由于操作系统未能识别到这些新增加的内容所致。为此建议执行如下步骤: - 将包含 `cudart64_110.dll` 的实际存储路径追加进全局环境变量 `PATH` 中去; - 对于 Anaconda 创建出来的独立工作区而言,可能还需要额外修改 `.condarc` 设置或是直接编辑启动脚本来显式声明相关参数。 #### 5. **测试 TensorFlow 是否正常运作** 一旦解决了底层硬件加速接口层面的问题之后,就可以进一步检验框架本身能否顺利初始化 GPU 设备了。这里给出一段基于 TensorFlow 的简单算例用于初步判断效果[^3]: ```python import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') with tf.device('/GPU:0'): c = tf.matmul(a, b) sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) print(sess.run(c)) ``` 以上代码片段会尝试将矩阵乘法运算分配给第一个可用图形处理器处理,并打印日志消息展示具体设备分配情况。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值