解决vscode运行tensorflow-gpu报错Could not load dynamic library ‘cudart64_110.dll

文章描述了用户在Anaconda环境下安装了Python3.8、CUDA11.0和cuDNN8.0,并成功使用TensorFlowGPU在命令行prompt中。但在VSCode中,尽管GPU可用性被识别,却因找不到cudart64_110.dll而报错。通过搜索和将Anaconda目录添加到系统环境变量解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行环境:anaconda 2023.07,python3.8,cuda11.0,cudnn8.0

#tensorflow测试代码
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

其中cuda和cudnn均在anaconda中通过conda安装,安装完成tensorflow-gpu后 ,在anaconda prompt中测试tensorflow显示正常,提示cpu和gpu均可用。但到vscode中测试只提示cpu可用,gpu提示报错Could not load dynamic library 'cudart64_110.dll'

网上相关的教程很多,但prompt中运行正常初步判断应该不是所谓的版本问题。通过everything在本地搜索'cudart64_110.dll'等依赖文件,发现在anacona目录下都有,于是将相关目录添加到系统环境变量后解决。

could not load dynamic library 'libcupti.so.11.2'” 表示无法加载动态库 'libcupti.so.11.2'。 这通常是因为系统或应用程序找不到所需的库文件或库文件版本不兼容。要解决这个问题,你可以尝试以下方法: 1. 确认库文件是否存在:首先确认 'libcupti.so.11.2' 动态库文件是否存在于你的系统中。你可以使用命令 `ls /path/to/libcupti.so.11.2` 来检查文件是否存在。 2. 检查库文件路径:如果库文件存在,但系统无法找到它,你可以尝试在 LD_LIBRARY_PATH 环境变量中添加库文件的路径。例如,执行以下命令:`export LD_LIBRARY_PATH=/path/to/library:$LD_LIBRARY_PATH`,将 /path/to/library 替换为实际的库文件路径。 3. 检查库文件版本兼容性:如果库文件版本不兼容,你可能需要查找适用于你的系统的兼容版本。可以尝试从官方网站或软件开发者处获取更新的库文件版本,并按照他们的说明进行安装和配置。 4. 更新相关软件:另一个解决方法是确保你的系统和相关软件都是最新的。尝试升级你的操作系统、驱动程序和应用程序,并重试加载动态库。 5. 寻求帮助:如果以上方法都不能解决问题,建议寻求相关领域专家或开发者的帮助。他们可能能够提供更具体的解决方案或建议。 这些是可能解决问题的常见方法,但具体解决方案取决于你的操作系统、应用程序和库文件的配置。因此,建议在尝试这些方法之前仔细阅读相关文档或寻求专业帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值