bzoj 4197: [Noi2015]寿司晚宴 (状压DP)

本文介绍了一种解决互质数对问题的动态规划算法,通过质因数分解和优化状态表示来降低复杂度,特别关注小于sqrt(n)的质因子。

题目描述

传送门

题目大意:给出2..n,共n-1个数,要求选出两个集合,是两个集合中的数两两互质。求方案数。

题解

首先考虑暴力DP。对于所有的数进行质因数分解,然后用 f[x][y] 表示第一个集合选中的质因子的状态为x,第二个集合选中的质因子的状态为y。只有(x and y)=0时方案才合法。
但是500以内的质因子有很多,所有考虑减少质因子的数量。
对于每个数来说超过 sqrt(n) 的质因子最多有1个,如果我们按照每个数超过 sqrt(n) 的质因子进行分组的话。每组中的数要么部分属于第一个集合,要么部分属于第二个集合,要么都不属于。现在只考虑小于 sqrt(n) 的质因子。
g[0/1][i][j] 表示该组中的数部分属于第一个集合/部分属于第二个集合,第一个集合的小于 sqrt(n) 的质因子状态为x,第二个集合为y。
对于所有没有大于 sqrt(n) 的数单独一组,不收组内的限制。
f[i][j] 表示第一集合状态为i,第二集合状态为j的个数。
只有每组中的第一个元素需要赋初始值, g[0/1][i][j]=f[i][j]
同样只有一组都做完了才累加 f[i][j] ,因为0/1的初始值中都有 f[i][j]
所以 f[i][j]=g[0][i][j]+g[1][i][j]f[i][j]

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define LL long long 
#define N 503
using namespace std;
LL f[1024][1024],p,g[2][1024][1024];
int n,pd[N],prime[N],cnt[N],m,t[N],mp[N];
struct data{
    int x,y;
}a[N];
int cmp(data a,data b)
{
    return a.y<b.y;
}
void init(int n)
{
    for (int i=2;i<=n;i++){
        if (!pd[i]) prime[++prime[0]]=i,mp[i]=prime[0];
        for (int j=1;j<=prime[0];j++){
            if (prime[j]*i>n) break;
            pd[prime[j]*i]=1;
        }
    }
}
LL quickpow(LL num,int x,LL p)
{
    LL ans=1,base=num%p;
    while (x){
        if (x&1) ans=ans*base%p;
        x>>=1;
        base=base*base%p;
    }
    return ans;
}
int main()
{
    freopen("a.in","r",stdin);
    scanf("%d%d",&n,&p);
    init(500);
    for (int i=2;i<=n;i++){
        int x=i;
        for (int j=1;j<=8;j++)
         if (x%prime[j]==0) {
            t[i]+=(1<<j-1);
            while (x%prime[j]==0) x/=prime[j];
         }
        a[i].x=i; a[i].y=x;
    }
    sort(a+2,a+n+1,cmp);
    f[0][0]=1; LL ans=0;
    for (int i=2;i<=n;i++) {
        if (i==2||a[i].y==1||a[i].y!=a[i-1].y)
         for (int j=0;j<(1<<8);j++)
          for (int k=0;k<(1<<8);k++) g[0][j][k]=g[1][j][k]=f[j][k];
        int x=a[i].x;
        for (int j=(1<<8);j>=0;j--)
         for (int k=(1<<8);k>=0;k--){
            if (!(j&t[x])) 
             (g[1][j][k|t[x]]+=g[1][j][k])%=p;
            if (!(k&t[x])) 
             (g[0][j|t[x]][k]+=g[0][j][k])%=p;
         }
        if (i==n||a[i].y==1||a[i].y!=a[i+1].y)
         for (int j=0;j<(1<<8);j++)
          for (int k=0;k<(1<<8);k++)
           f[j][k]=(g[0][j][k]+g[1][j][k]-f[j][k])%p;
    }
    for (int i=0;i<(1<<8);i++)
     for (int j=0;j<(1<<8);j++) 
      if (!(i&j)) ans=(ans+f[i][j])%p;
    printf("%lld\n",(ans%p+p)%p);
} 
内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
本系统采用SpringBoot与Vue技术架构,实现了完整的影院票务管理解决方案,包含后台数据库及全套可执行代码。该系统在高等院校计算机专业毕业设计评审中获得优异评价,特别适用于正在进行毕业课题研究的学生群体,以及需要提升项目实践能力的开发者。同时也可作为课程结业作业或学期综合训练项目使用。 系统提供完整的技术文档和经过全面测试的源代码,所有功能模块均通过多轮调试验证,保证系统稳定性和可执行性。该解决方案可直接应用于毕业设计答辩环节,其技术架构符合现代企业级开发规范,采用前后端分离模式,后端基于SpringBoot框架实现业务逻辑和数据处理,前端通过Vue.js构建用户交互界面。 系统核心功能涵盖影院管理、影片排期、座位预定、票务销售、用户管理等模块,实现了从影片上架到票务核销的完整业务流程。数据库设计遵循第三范式原则,确保数据一致性和完整性。代码结构采用分层架构设计,包含控制器层、服务层、数据访问层等标准组件,便于后续功能扩展和维护。 该项目不仅提供了可直接部署运行的完整程序,还包含详细的技术实现文档,帮助开发者深入理解系统架构设计理念和具体实现细节。对于计算机专业学生而言,通过研究该项目可以掌握企业级应用开发的全流程,包括需求分析、技术选型、系统设计和测试部署等关键环节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值