bzoj 4197: [Noi2015]寿司晚宴 (状压DP)

题目描述

传送门

题目大意:给出2..n,共n-1个数,要求选出两个集合,是两个集合中的数两两互质。求方案数。

题解

首先考虑暴力DP。对于所有的数进行质因数分解,然后用 f[x][y] 表示第一个集合选中的质因子的状态为x,第二个集合选中的质因子的状态为y。只有(x and y)=0时方案才合法。
但是500以内的质因子有很多,所有考虑减少质因子的数量。
对于每个数来说超过 sqrt(n) 的质因子最多有1个,如果我们按照每个数超过 sqrt(n) 的质因子进行分组的话。每组中的数要么部分属于第一个集合,要么部分属于第二个集合,要么都不属于。现在只考虑小于 sqrt(n) 的质因子。
g[0/1][i][j] 表示该组中的数部分属于第一个集合/部分属于第二个集合,第一个集合的小于 sqrt(n) 的质因子状态为x,第二个集合为y。
对于所有没有大于 sqrt(n) 的数单独一组,不收组内的限制。
f[i][j] 表示第一集合状态为i,第二集合状态为j的个数。
只有每组中的第一个元素需要赋初始值, g[0/1][i][j]=f[i][j]
同样只有一组都做完了才累加 f[i][j] ,因为0/1的初始值中都有 f[i][j]
所以 f[i][j]=g[0][i][j]+g[1][i][j]f[i][j]

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define LL long long 
#define N 503
using namespace std;
LL f[1024][1024],p,g[2][1024][1024];
int n,pd[N],prime[N],cnt[N],m,t[N],mp[N];
struct data{
    int x,y;
}a[N];
int cmp(data a,data b)
{
    return a.y<b.y;
}
void init(int n)
{
    for (int i=2;i<=n;i++){
        if (!pd[i]) prime[++prime[0]]=i,mp[i]=prime[0];
        for (int j=1;j<=prime[0];j++){
            if (prime[j]*i>n) break;
            pd[prime[j]*i]=1;
        }
    }
}
LL quickpow(LL num,int x,LL p)
{
    LL ans=1,base=num%p;
    while (x){
        if (x&1) ans=ans*base%p;
        x>>=1;
        base=base*base%p;
    }
    return ans;
}
int main()
{
    freopen("a.in","r",stdin);
    scanf("%d%d",&n,&p);
    init(500);
    for (int i=2;i<=n;i++){
        int x=i;
        for (int j=1;j<=8;j++)
         if (x%prime[j]==0) {
            t[i]+=(1<<j-1);
            while (x%prime[j]==0) x/=prime[j];
         }
        a[i].x=i; a[i].y=x;
    }
    sort(a+2,a+n+1,cmp);
    f[0][0]=1; LL ans=0;
    for (int i=2;i<=n;i++) {
        if (i==2||a[i].y==1||a[i].y!=a[i-1].y)
         for (int j=0;j<(1<<8);j++)
          for (int k=0;k<(1<<8);k++) g[0][j][k]=g[1][j][k]=f[j][k];
        int x=a[i].x;
        for (int j=(1<<8);j>=0;j--)
         for (int k=(1<<8);k>=0;k--){
            if (!(j&t[x])) 
             (g[1][j][k|t[x]]+=g[1][j][k])%=p;
            if (!(k&t[x])) 
             (g[0][j|t[x]][k]+=g[0][j][k])%=p;
         }
        if (i==n||a[i].y==1||a[i].y!=a[i+1].y)
         for (int j=0;j<(1<<8);j++)
          for (int k=0;k<(1<<8);k++)
           f[j][k]=(g[0][j][k]+g[1][j][k]-f[j][k])%p;
    }
    for (int i=0;i<(1<<8);i++)
     for (int j=0;j<(1<<8);j++) 
      if (!(i&j)) ans=(ans+f[i][j])%p;
    printf("%lld\n",(ans%p+p)%p);
} 
内容概要:本文详细介绍了水中有限长加肋圆柱壳体振动和声辐射的近似解析解,并提供了完整的Python实现。文中首先阐述了问题背景,即加肋圆柱壳体作为水下航行器的主要结构形式,肋骨的作用被简化为只有法向力。接着,通过一系列关键方程(如模态振动速度方程、壳体机械阻抗、特征矩阵元素等),推导出加肋圆柱壳体的振动和声辐射特性。Python代码部分实现了这些理论,包括定义`CylindricalShell`类来封装所有计算功能,如初始化参数、机械阻抗、辐射阻抗、肋骨阻抗、模态速度、辐射功率和辐射效率的计算。此外,还扩展了带刚性圆柱障板的圆柱壳体类`CylindricalShellWithBaffle`,并引入了集中力激励、简支边界条件和低频段计算的内容。最后,通过具体示例展示了如何创建壳体对象、设置参数、计算频率响应以及绘制结果图表,验证了加肋对辐射声功率和声辐射效率的影响。 适合人群:具备一定编程基础和声学基础知识的研究人员、工程师,特别是从事水下声学、船舶工程和振动分析领域的专业人员。 使用场景及目标:①通过代码实现和理论推导,深入理解加肋圆柱壳体的振动和声辐射特性;②分析肋骨对壳体声学性能的影响,优化结构设计;③利用Python代码进行数值模拟,评估不同参数配置下的声辐射效率和功率;④为实际工程项目提供理论支持和技术参考。 其他说明:本文不仅提供了详细的数学推导和Python代码实现,还讨论了实际应用中的注意事项,如参数调整、高频模态考虑、肋骨模型细化和数值稳定性处理。建议读者结合实际需求,灵活运用文中提供的理论和代码,进行更深入的研究和实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值