摩尔投票法

这篇博客介绍了如何使用摩尔投票法解决LeetCode中的第229题,即在数组中找出出现次数超过n/3的元素。文章详细阐述了摩尔投票法的原理,即通过抵消不同元素来找到可能的多数元素,并通过二次遍历来验证最终结果。代码实现中,使用了两个变量k1和k2来记录可能的多数元素,以及对应的计数器c1和c2,最终返回满足条件的元素列表。
摘要由CSDN通过智能技术生成

今天了遇到了Leecode229——众数||题:给定一个大小为 n 的整数数组,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。常规法用哈希表即可得出,另外还有一种线性算法即可实现——摩尔投票法。

摩尔投票法
1、原因:对于任意一个大小为n的数组,出现次数超过n/2的元素个数不超过1。
2、算法过程:假定k就是所要找的元素,用c记录当前遍历得到k的次数,遍历一次数组,每当遇到与k不同的数字,就将c-1,即将k与一个不同的数抵消。当c==0时,就将当前遍历得到的数字记作k,c调为1。
3、解释:如果数组中存在k这样的数,在遍历一次数组后,出现次数超过n/2的元素一定是k,不过,若数组中没有n/2的数,也会遍历出一个k,因此最后需要再次遍历数组检查k是否满足条件。

题解:
因为数组中最多只有2两个数出现次数超过n/3,因此定义k1和k2来记录元素,c1和c2记录出现次数,遍历两次数组即可。

public List<Integer> majorityElement(int[] nums){
        int k1=0,k2=0,c1=0,c2=0;
        for(int i=0;i<nums.length;++i){
            if(nums[i]==k1&&c1>0){
                c1++;
            }else if(nums[i]==k2&&c2>0){
                c2++;
            }else if(c1==0){
                k1=nums[i];
                c1++;
            }else if(c2==0){
                k2=nums[i];
                c2++;
            }else{
                c1--;
                c2--;
            }
        }
        c1=0;
        c2=0;
        for(int i=0;i<nums.length;++i){
            if(nums[i]==k1) c1++;
            if(nums[i]==k2) c2++;
        }
        List<Integer> list=new LinkedList<>();
        if(c1>nums.length/3) list.add(k1);
        if(c2>nums.length/3&&k1!=k2) list.add(k2);
        return list;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值