给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/
解法一:
采用递归实现:
1、递归函数的参数和返回值:参数就是传入树的根节点,返回值为这颗树的深度。
2、终止条件,如果遇到NULL节点,则返回0
3、单层递归逻辑,对于根节点,先求左子树的深度,再求右子树的深度,最后取左右子树深度的最大数值加1,就是整颗树的最大深度了。
class Solution {
public:
int maxDepth(TreeNode* root) {
return getMaxDepth(root);
}
int getMaxDepth(TreeNode* root)
{
if(root == nullptr)
{
return 0;
}
int leftDepth = getMaxDepth(root->left);
int rightDepth = getMaxDepth(root->right);
int depth = 1 + max(leftDepth, rightDepth);
return depth;
}
};
解法二:
采用非递归实现,如果采用非递归实现就需要用到树的层次遍历了,最大深度是等于树的层数的。
class Solution {
public:
int maxDepth(TreeNode* root) {
int depth = 0;
queue<TreeNode*> que;
vector<vector<int>> result;
if(root != nullptr) que.push(root);
while(!que.empty())
{
depth++;
int size = que.size();
vector<int> level;
for(int i = 0; i < size; i++)
{
TreeNode* tmpNode = que.front();
level.push_back(tmpNode->val);
que.pop();
if(tmpNode->left) que.push(tmpNode->left);
if(tmpNode->right) que.push(tmpNode->right);
}
result.push_back(level);
}
return depth;
}
};