异常检测是机器学习一个重要的领域,无论是学术上还是工业上都有非常重要的应用。
依据数据特征主要分为以下三类:
- 有监督
- 半监督
- 无监督
(2)基于聚类的算法,如CBLOF(the cluster-based local outlier factor)
(3)基于统计的算法,无论是参数的还是非参数的,都主要是对单变量数据进行操作的,而很少的多变量方法对大数据集计算过于密集。
(4)IForest算法(时间序列异常检测)。适合高维数据
基于近邻的算法优于基于聚类的算法。
参考文献:
[1] Goldstein M. FastLOF: An Expectation-Maximization based Local Outlier detection algorithm[C]// International Conference on Pattern Recognition. IEEE, 2013:2282-2285.