异常检测算法小结

异常检测是机器学习一个重要的领域,无论是学术上还是工业上都有非常重要的应用。

依据数据特征主要分为以下三类:

  • 有监督
    主要算法有NN(neural networks)、SVM、KNN
  • 半监督
    代表算法One-Class-SVM(一种新颖性检测算法,不能完全说是异常检测)、Anomaly Trees
  • 无监督
    (1)基于近邻的算法,如KNN, LOF(local outiler factor,适用于中等高维数据), COF(connectivity-based outilier factor), LoOP(local outiler probability), INFLO(the influenced outilerness), LOCI(the parameter-free local correlation integral),FastLOF
        (2)基于聚类的算法,如CBLOF(the cluster-based local outlier factor)
      (3)基于统计的算法,无论是参数的还是非参数的,都主要是对单变量数据进行操作的,而很少的多变量方法对大数据集计算过于密集。
      (4)IForest算法(时间序列异常检测)。适合高维数据
    基于近邻的算法优于基于聚类的算法。




参考文献:

[1] Goldstein M. FastLOF: An Expectation-Maximization based Local Outlier detection algorithm[C]// International Conference on Pattern Recognition. IEEE, 2013:2282-2285.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值