机器学习基础算法
ChoesTiger wa
这个作者很懒,什么都没留下…
展开
-
机器学习算法基础3 - 回归算法
回归:连续性数据线性回归模型通过特征的线性组合作为预测函数。 损失函数最小二乘法 系数矩阵w求解-1- 正规方程 (sklearn.linear_model.LinearRegression)缺点: 当特征数量多而复杂时,求解速度慢,复杂算法无法通过正规方程求解。from sklearn.datasets import load_bostonfrom sklearn.linear_model import LinearRegression, SGDRegressorfrom原创 2020-05-25 16:07:34 · 394 阅读 · 0 评论 -
机器学习基础算法2 - 机器学习算法概述及分类算法
机器学习算法分类**监督学习**:输入数据有特征也有标签值分类:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络回归:线性回归、岭回归标注:隐马尔可夫模型**无监督学习**:输入数据有特征但无标签值聚类:k-means机器学习开发流程(1)收集原始数据,明确需解决问题(2)数据的基本处理(缺失值、合并等)(3)特征工程(4)找到合适的算法建立模型(5)模型的评估,判断效果(6)若效果不好,继续重复(3)、(4)、(5)步机器学习数据集训练集:用于训.原创 2020-05-21 11:56:23 · 418 阅读 · 0 评论 -
机器学习基础算法1-特征工程
数据:特征值+目标值。特征工程将原始数据转化为更好代表预测模型的潜在问题的特征的过程,提高未知数据预测的准确性。主要工具-1- pandas:处理缺失值,数据转换,一般不需要处理重复值-2- sklearn:特征处理特征抽取(Feature Extraction)对文本等数据进行特征值化。sklearn特征抽取API:sklearn.feature_extraction2.1. 字典数据特征值化(类: sklearn.feature_extraction.DictVector原创 2020-05-20 14:07:20 · 303 阅读 · 0 评论