Middle-题目42/43:274. H-Index && 275. H-Index II

题目原文:
274. H-Index

Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher’s h-index.
According to the definition of h-index on Wikipedia: “A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each.”
For example, given citations = [3, 0, 6, 1, 5], which means the researcher has 5 papers in total and each of them had received 3, 0, 6, 1, 5 citations respectively. Since the researcher has 3 papers with at least 3 citations each and the remaining two with no more than 3 citations each, his h-index is 3.

275.HIndexII

Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimize your algorithm?
题目大意:
274.HIndex

给出一个研究者的引用量数组,写一个算法计算这个研究者的h指数。
H指数的定义:一个人的h指数是指在一定期间内他发表的论文至少有h篇的被引频次不低于h次。
例如,给出citations数组=[3,0,6,1,5],代表这个研究者写了5篇论文,引用次数分别是3,0,6,1,5.那么他的h值是3,因为有3篇论文的引用次数>=3次。

275.HIndexII

若citations数组是升序排列的,能否优化算法?
题目分析:
根据wiki中给出的算法:
这里写图片描述
把引用数降序排列画在坐标系中,位于直线y=x上面的点个数就是h值。由于本题中引用数是降序排列的,所以改为统计位于直线x+y=n(n为论文数目)上方点的数目即可。因为数组是有序的,所以可以使用二分查找。
源码:(language:java)

public class Solution {
    public int hIndex(int[] citations) {
        int count=0,length = citations.length;
        int start=0,end=length-1,mid=0;
        while(start<=end) {
            mid = (start+end) / 2;
            if(citations[mid] >= length-mid) {
                if(mid==0 || citations[mid-1]<length-mid+1)
                    return length-mid;
                else if(citations[mid-1]>=length-mid)
                    end=mid-1;
            }
            else
                start=mid+1;
        }
        return 0;       
    }
}

成绩:
H-Index:4ms,beats 9.28%,众数1ms,38.82%
H-Index II:13ms,beats 31.68%,众数12ms,24.72%
Cmershen的碎碎念:
在第一题中,使用二分查找比无脑查找慢,但第二题中无脑插的耗时是213ms,远差于二分查找。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值