Middle-题目78:131. Palindrome Partitioning

本文介绍了一种通过回溯法实现的字符串分割算法,该算法可以找出所有可能的回文子串分割方式。以 Java 语言为例,详细解析了算法的具体实现过程。

题目原文:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = “aab”,
Return
[
[“aa”,”b”],
[“a”,”a”,”b”]
]
题目大意:
返回字符串s的所有回文子串的分割。
题目分析:
使用backtrack(List<List<String>> list, List<String> sublist, String s)维护搜索过程,每次从s的开头开始截取字符串,每次判断一下是否为回文串,如果是就放入sublist,然后去掉加入sublist的部分继续向下搜索,直到s为空。
源码:(language:java)

public class Solution {
    public List<List<String>> partition(String s) {
        List<List<String>> list = new ArrayList<List<String>>();
        backtrack(list,new ArrayList<>(),s);
        return list;
    }
    private void backtrack(List<List<String>> list, List<String> sublist, String s) {
        if(s.length() == 0) {
            list.add(new ArrayList<String>(sublist));
        }       
        else {
            for(int i = 1; i<=s.length();i++) {
                if(isPalindrome(s.substring(0, i))) {
                    sublist.add(s.substring(0, i));
                    backtrack(list, sublist, s.substring(i));
                    sublist.remove(sublist.size()-1);
                }
            }
        }
    }
    public boolean isPalindrome(String s) {
        if(s==null||s.length()==0)
            return true;

        for(int i = 0,j = s.length()-1;i<j;i++,j--) {
            if(s.charAt(i)!=s.charAt(j))
                return false;
        }
        return true;
    }
}

成绩:
8ms,beats 31.90%,众数8ms,29.29%

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值