Hard-题目4:145. Binary Tree Postorder Traversal

本文介绍了一种使用递归方法实现二叉树后序遍历的算法,并提供了Java语言的具体实现。该方法首先遍历左子树,然后遍历右子树,最后访问根节点。

题目原文:
Given a binary tree, return the postorder traversal of its nodes’ values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [3,2,1].
题目大意:
求二叉树的后序遍历。
题目分析:
只考虑ac,故水过去。
源码:(language:java)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<Integer>();
        traverse(root,result);
        return result;
    }
    public void traverse(TreeNode node,List<Integer> list) {
        if(node!=null) {

            traverse(node.left,list);
            traverse(node.right,list);
            list.add(node.val);
        }
        return;
    }
}

成绩:
1ms,beats 70.01%,众数2ms,62.51%
Cmershen的碎碎念:
本题的递归算法很简洁易懂,哪怕是数据结构的初学者也能轻松写出。但是非递归解法比较复杂,好像要用两个栈(严蔚敏版数据结构应该讲了),且时间复杂度并未提高,所以我觉得这是一个挺无聊的问题。Btw,任何递归算法都存在等效的非递归算法吗?

内容概要:本文围绕基于FFT算法的MATLAB傅里叶级数3D可视化展开研究,结合Matlab代码实现信号处理中的频域分析与三维图形展示,旨在通过快速傅里叶变换(FFT)将时域信号转换为频域特征,并利用三维可视化技术直观呈现周期信号的频谱结构。文中可能涵盖傅里叶级数的数学原理、FFT算法的实现流程、Matlab编程细节以及3D绘图的技术方法,帮助读者深入理解信号频域特性及其可视化表达。此外,文档还列举了大量相关的科研仿真项目,如故障诊断、路径规划、优化算法等,体现出该研究在工程与科研领域的广泛应用背景。; 适合人群:具备一定Matlab编程基础和信号处理知识的高校学生基于FFT算法的MTALAB傅里叶级数3D可视化研究(Matlab代码实现)、科研人员及工程技术人员,尤其适用于从事信号分析、故障诊断或可视化研究的相关从业者; 使用场景及目标:①掌握FFT在Matlab中的实现方式及其在信号频谱分析中的应用;②学习如何将傅里叶级数结果进行3D可视化以增强数据分析的直观性;③为后续开展机械故障诊断、电力系统分析、通信信号处理等领域的研究提供技术参考与代码基础; 阅读建议:建议读者结合文中提供的Matlab代码进行实际操作,逐步调试并理解每一步的信号变换与图形绘制逻辑,同时可参考附带的网盘资源获取完整代码示例和其他相关仿真模型,提升实践能力与科研效率。
内容概要:本文详细介绍了一个基于MATLAB实现的Stacking-SVM堆叠集成算法项目,旨在通过结合多种基学习器(如线性SVM、高斯核SVM、决策树)与支持向量机(SVM)作为元学习器,提升多特征复杂任务的分类预测性能。项目涵盖了从数据生成、预处理、特征选择、模型训练、交叉验证到结果评估与可视化的完整流程,并设计了图形用户界面(GUI),支持数据加载、参数调优、模型训练、预测及结果导出等功能。文中还阐述了该模型在医疗诊断、金融风控、工业预警、智能交通等多个领域的应用潜力,并强调了系统在鲁棒性、可解释性、工程化部署和安全性方面的优势。; 适合人群:具备一定机器学习基础和MATLAB编程经验的研发人员、数据科学家及工程技术人员,尤其适合从事智能决策系统开发、多模态数据分析等相关工作的1-5年经验从业者。; 使用场景及目标:①解决高维、异构、小样本或多类别数据的分类难题;②提升传统单一模型在复杂场景下的泛化能力与稳定性;③实现集成学习与SVM深度融合的技术落地;④构建可解释、可扩展、可部署的智能分类系统原型。; 阅读建议:建议读者结合提供的完整代码与GUI设计逐步实践,重点关注数据预处理、堆叠结构设计、交叉验证防泄漏机制及模型评估方法。在学习过程中应动手调试程序,理解各模块功能,并尝试替换基学习器或调整参数以加深对集成学习机制的理解。同时,可将本项目作为模板迁移到实际业务场景中进行二次开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值