洛谷[P1024 一元三次方程求解] {二分} 奋斗的珂珂~

洛谷[P1024 一元三次方程求解] {二分}

题目描述

有形如:a x 3 x^3 x3+b x 2 x^2 x2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在−100至100之间),且根与根之差的绝对值≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。

提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)×f(x2)<0,则在
(x1,x2)之间一定有一个根。

输入格式

一行,4个实数A,B,C,D。

输出格式

一行,3个实根,并精确到小数点后2位。

输入输出样例

输入
1 -5 -4 20
输出
2.00 2.00 5.00

解题思路

   用最基础的二分法来解决这道问题。二分法解决的问题:寻找有序序列中的第一个满足该条件的元素的位置。
1、首先,根据题目中所给,两个根之间绝对值的差大于等于1,所以我们循环的i自增的值就设为1,因此在-100~100之间我们来寻找长度为一的区间内是否含有根。

for(double i=-100;i<=99;i++)//因为题目中说明两个数之间绝对值大于1,故i递增的值是1 
	{
		if(f(i)==0) printf("%.2f ",i);//如果满足则可以直接输出,不要再判断f(i+1),因为外层循环在递增,这样会重复输出 
		if(f(i)*f(i+1)<0) //其中有解 
		{
		double result=binarysearch(i,i+1); 
		printf("%.2f ",result);
	    }
	}

2、判断左端点是否是函数的根,不判断右端点是因为在判断左端点之后再判断右端点会使得后面循环时满足要求的根再次输出。
3、在判断区间内部有根之后进入二分函数,如果left与right相差大于eps,则说明还可以进行二分,如果小于等于说明此时的精确度已经达到题目要求了,可以直接返回。最后返回left或者right均可。

完整代码

#include<bits/stdc++.h>
using namespace std;
double A,B,C,D;
const double eps=1e-3;

inline double f(double x)//使用inline可以节省调用函数的时间,
{//但是inline不可以用在递归中 
    return A*x*x*x+B*x*x+C*x+D;
}

double binarysearch(double left,double right)//二分模板
{
	while(right-left>eps)//只有两数相差大于eps才可以进行二分操作,
	{ //否则可以直接作为结果输出(因为本题要求输出两位小数) 
		double mid=(left+right)/2;
		if(f(left)*f(mid)<0) right=mid;//说明解在left~mid中 
		else left=mid;//说明解在mid~right中 
	}
	return left;//此处返回left或者right均可以 
}

int main()
{
	scanf("%lf %lf %lf %lf",&A,&B,&C,&D);
	for(double i=-100;i<=99;i++)//因为题目中说明两个数之间绝对值大于1,故i递增的值是1 
	{
		if(f(i)==0) printf("%.2f ",i);//如果满足则可以直接输出,不要再判断f(i+1),因为外层循环在递增,这样会重复输出 
		if(f(i)*f(i+1)<0) //其中有解 
		{
		double result=binarysearch(i,i+1); 
		printf("%.2f ",result);
	    }
	}
	return 0;
}
 
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我们可以使用“最小公倍数”来解决这个问题。 首先,我们需要找出满足条件的第一本书的下标,也就是最小的正整数 $n$,使得 $n \equiv 1 \pmod{3}$ 且 $n \equiv 0 \pmod{4}$。可以发现,这个 $n$ 就是 $lcm(3, 4) = 12$。 接下来,我们可以列出一系列的方程: \begin{aligned} x &\equiv n \pmod{3} \\ x &\equiv n-3 \pmod{3} \\ &\vdots \\ x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \\ x &\equiv 4 \pmod{4} \\ &\vdots \\ x &\equiv 0 \pmod{4} \end{aligned} 其中,第一个方程表示 $x$ 和第一本书的间隔是 $3$,第二个方程表示 $x$ 和第四本书的间隔是 $3$,以此类推,直到最后一个方程表示 $x$ 和最后一本书的间隔是 $4$。 根据中国剩余定理,这个方程组有唯一解 $x$,满足 $1 \leq x \leq N$,其中 $N$ 是所有书的数量。因此,我们只需要检查 $x$ 和 $x-3$ 是否都是喜欢的书,以及 $x$ 和 $x-4$ 是否都是乐乐喜欢的书,即可确定有多少本书是他们共同爱好的。 注意到这个方程组中有很多重复的方程,我们可以使用扩展中国剩余定理来加速计算。具体来说,我们可以将方程组拆成两个子系统: \begin{aligned} x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 和 \begin{aligned} x &\equiv 4 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 分别求出它们的唯一解 $x_1$ 和 $x_2$,然后使用扩展欧几里得算法求出一个特解 $x_0$ 和 $M$,满足 $x_0 \equiv x_1 \pmod{3 \cdot 4}$,$x_0 \equiv x_2 \pmod{3 \cdot 4}$,$M = lcm(3, 4)$。最后,我们可以得到方程组的通解: $$ x \equiv x_0 + kM \pmod{3 \cdot 4} $$ 其中 $k$ 是任意整数。我们只需要枚举 $k$,检查 $x$ 是否符合条件即可。时间复杂度为 $O(\log N)$。 综上所述,他们共同爱好的书的数量为 $\lfloor \frac{N-x_0}{M} \rfloor$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值