- 博客(5)
- 资源 (8)
- 收藏
- 关注
原创 异常检测task1
task1的内容是异常检测内容介绍:分别是了解异常检测的基本概念和基本方法(1)异常检测的基本概念:异常检测的目的是识别与正常数据不同的数据,与预期行为差异大的数据。比如:识别行用卡欺诈,工业生产异常,网络流异常(网络被入侵),针对少数事件。一、异常的类别点异常:是指少数个体实例异常,大多数的个体实例正常,比如正常人与病人的健康指标。上下文异常:是指在特定情境下个体实例是异常的,其他情境下都是正常的,比如在特定时间下的温度突然上升或下降,快速行用卡交易。群体异常:指的是在群体集合中.
2021-01-18 23:31:01 337
原创 知识图谱task4
1.问答系统介绍问答系统的实现方式:基于流水线(pipeline)实现:基于流水线实现的问答系统有四大核心模块,分别由自然语言理解(NLU)、对话状态跟踪器(DST)、对话策略(DPL)和自然语言生成(NLG)依次串联构成的一条流水线,各模块可独立设计,模块间协作完成任务。 基于端到端(end-to-end)实现:基于端到端实现的问答系统,主要是结合深度学习技术,通过海量数据训练,挖掘出从用户自然语言输入到系统自然语言输出的整体映射关系,而忽略中间过程的一种方法。但就目前工业界整体应用而言,工业界的
2021-01-18 01:15:01 358
转载 知识图谱task1
知识图谱是由 Google 公司在 2012 年提出来的一个新的概念。从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。目录 1.知识图谱的重要概念 2.如何构建知识图谱 3.安装并启动Neo4j 4.Neo4j实战 4.1创建节点 4.2创建关系 4.3创建出生地关系 4.4图数据库查询 4.5删除和修改 5.通过 Python 操作 Neo4j ..
2021-01-17 21:29:24 138
原创 Datawhale 异常检测学习笔记
异常检测,学习笔记:第一天:了解了学习规则和学习任务,完成了群名片修改,认识了新朋友;第二天学习笔记:完成了task1的任务,即论文数据统计 ,主要是学习pandas的使用方法和数据可视化,python使用还不是很熟练,因此继续加强python的练习。之后学习了数据预处理,包括统计不同类别的数据分类,其中split函数功能很强大。了解了异常检测的定义和类别,异常检测的任务分类,学习了异常检测的常用方法,包括传统的方法,传统的方法主要由基于统计学习的方法,线性模型和基于相似度的方法,.
2021-01-14 22:38:01 177
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人