有一道不错的图论:P2149 [SDOI2009] Elaxia的路线,学习了一下大佬的想法,先正反跑四遍最短路,然后肯定他们交互的边在其中出现,那么,明显还有一个结论,就是倘若一条边在一条最短路之中,那么肯定两个端点分别到起点与终点的距离+其长度==最短路的长度,自己画图想想,绝妙,那么我们就可以正反跑四遍来求出距离之后枚举就行了,最后套一个拓扑操作方案是——若是我这条边能被加入,那么就加入并使其取最大值。注意要正做一遍反做一遍。
为什么要正做一次反做一次呢,是因为,可能会倒着走,两个人从不同方向走同一条边也算满足条件。所以正反都要做。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,len=0,last[1000001],dis[1000001][5],INF=1000010000;
bool v[2000001];
int to[1000001],in[1000001],f[1000001],g[1000001];
struct pp
{
int x,y,c,next;
};pp p[2500250];
struct node
{
int x,dis;
friend bool operator < (const node &x,const node &y)
{
return x.dis > y.dis;
};
};priority_queue<node > q;
void ins(int x,int y,int c)
{
int now=++len;
p[now]={x,y,c,last[x]};last[x]=now;
return ;
}
void dj(int ST,int k)
{
for(int i=1;i<=n;i++) dis[i][k]=INF,v[i]=false;dis[ST][k]=0;
node e;e.dis=dis[ST][k],e.x=ST;q.push(e);
while(q.size())
{
node x=q.top();q.pop();if(v[x.x]) continue ;v[x.x]=true;
for(int i=last[x.x];i!=-1;i=p[i].next)
{
int y=p[i].y;
if(dis[y][k]>dis[x.x][k]+p[i].c)
{
dis[y][k]=dis[x.x][k]+p[i].c;
e.dis=dis[y][k],e.x=y;q.push(e);
}
}
}
while(q.size()) q.pop();
return ;
}
int st1,st2,ed1,ed2;
signed main()
{
memset(last,-1,sizeof(last));
scanf("%lld%lld%lld%lld%lld%lld",&n,&m,&st1,&ed1,&st2,&ed2);
for(int i=1;i<=m;i++)
{
int x,y,c;scanf("%lld%lld%lld",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}
dj(st1,0);dj(ed1,1);dj(st2,2);dj(ed2,3);memset(v,false,sizeof(v));
for(int x=1;x<=n;x++)
{
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;
if(p[i].c+dis[x][0]+dis[y][1]==dis[ed1][0]) in[y]++,v[i]=true;
}
}
int st=1,ed=1,ans=0;to[ed++]=st1;
while(st!=ed)
{
int x=to[st++];ans=max(ans,max(f[x],g[x]));
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;if(!v[i]) continue ;
in[y]--;if(!in[y]) to[ed++]=y;//printf("%d %d\n");
if(dis[x][2]+p[i].c+dis[y][3]==dis[ed2][2]) f[y]=max(f[y],f[x]+p[i].c);
if(dis[x][3]+p[i].c+dis[y][2]==dis[ed2][2]) g[y]=max(g[y],g[x]+p[i].c);
}
}
printf("%lld",ans);
return 0;
}
割点好题?P5058 [ZJOI2004]嗅探器
#include<bits/stdc++.h>
using namespace std;
int n,m,len=0,last[500005],dfsx[500005],low[500005],dfs_x=0,ans[500005];
int a,b;
struct pp
{
int x,y,next;
};pp p[2000005];
void ins(int x,int y)
{
int now=++len;
p[now]={x,y,last[x]};last[x]=now;
return ;
}
void CNT(int x)
{
dfsx[x]=low[x]=++dfs_x;
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;
if(!dfsx[y])
{
CNT(y),low[x]=min(low[x],low[y]);
if(dfsx[x]<=low[y]&&x!=a&&dfsx[b]>=dfsx[y]) ans[x]=1;
}
low[x]=min(low[x],dfsx[y]);
}
return ;
}
int main()
{
memset(last,-1,sizeof(last));
scanf("%d",&n);
int x,y;while(scanf("%d%d",&x,&y))
{
if(x==0&&y==0) break ;
ins(x,y);ins(y,x);
}
scanf("%d%d",&a,&b);
CNT(a);
for(int i=1;i<=n;i++)
{
if(ans[i])
{
printf("%d",i);
return 0;
}
}
printf("No solution");
return 0;
}
P3469 [POI2008]BLO-Blockade,讨论两种情况,如果点x是不是割点,那么贡献是2*(n-1),因为一个点与余下所有点的匹配就是这样的啦(注意这里要求是有序点对,所以是乘二) ,那么可能要是割点的话呢,那么就要讨论一下,被割出去了的点,剩下的环(联通块),剩下的那一个点。然后就算一下就行。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,len=0,last[5000001],dfsx[5000001],low[5000001],dfs_x=0;
int siz[5000001],ans[5000001],cnt[5000001];
struct pp
{
int x,y,next;
};pp p[5000001];
void ins(int x,int y)
{
int now=++len;
p[now]={x,y,last[x]};last[x]=now;
return ;
}
void CNT(int x,int dd)
{
dfsx[x]=low[x]=++dfs_x;siz[x]=1;
int sum=0,ch=0,pd=0;
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;
if(!dfsx[y])
{
CNT(y,dd);
low[x]=min(low[x],low[y]);
siz[x]+=siz[y];
if(dfsx[x]<=low[y])
{//printf("**%d\n",x);
ans[x]+=(siz[y]*(n-siz[y]));
sum+=siz[y];
if(x==dd) ch++;
else pd=1;
}
}
else low[x]=min(low[x],dfsx[y]);
}
if(pd||(ch>=2)) ans[x]+=(n-sum-1)*(sum+1)+(n-1);
else ans[x]=(n-1)*2;
return ;
}
signed main()
{
memset(last,-1,sizeof(last));
scanf("%lld%lld",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;scanf("%lld%lld",&x,&y);
ins(x,y);ins(y,x);
}
CNT(1,1);
for(int i=1;i<=n;i++) printf("%lld\n",ans[i]);
return 0;
}
谈一谈分层图P4822 [BJWC2012]冻结,建图的方式其实是和网络流那种差不多的不过就是有一些差别。考虑每一个k的贡献,我们还是被局限了,你太过于关注于每次的最优解,而不是全局的,这才是你次次失利的原因,考虑让其内部解决,我们只需要统计最小值,具体而言,对于每一个点可以向下一层建距离一半的边k条,那就行了,然后直接统计答案。具体的看看代码?主要是思想哦
#include<bits/stdc++.h>
using namespace std;
int n,m,len=0,last[4000001],dis[4000001],k;
bool v[4000001];
struct pp
{
int x,y,c,next;
};pp p[4000001];
struct node
{
int x,dis;
friend bool operator < (const node &x,const node &y)
{
return x.dis>y.dis;
};
};priority_queue<node> q;
void ins(int x,int y,int c)
{
int now=++len;
p[now]={x,y,c,last[x]};last[x]=now;
return ;
}
int dj(int ST)
{
memset(dis,63,sizeof(dis));memset(v,false,sizeof(v));
dis[ST]=0;node e;e.dis=dis[ST],e.x=ST;q.push(e);
while(q.size())
{//printf("*");
node x=q.top();q.pop();if(v[x.x]) continue ;v[x.x]=true ;
for(int i=last[x.x];i!=-1;i=p[i].next)
{// printf("%d %d %d\n",dis[p[i].y],dis[x.x],p[i].c);
int y=p[i].y;if(dis[y]<dis[x.x]+p[i].c) continue ;
dis[y]=dis[x.x]+p[i].c;e.x=y,e.dis=dis[y];q.push(e);
}
}
int minn=1e9;
for(int i=1;i<=k+1;i++) minn=min(minn,dis[i*n]);
return minn;
}
int main()
{
memset(last,-1,sizeof(last));
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
int x,y,c;scanf("%d%d%d",&x,&y,&c);
for(int j=0;j<=k;j++) ins(j*n+x,j*n+y,c),ins(j*n+y,j*n+x,c);
for(int j=0;j<k;j++) ins(j*n+x,(j+1)*n+y,c/2),ins(j*n+y,(j+1)*n+x,c/2);
}
printf("%d",dj(1));
return 0;
}
P4568 [JLOI2011] 飞行路线呃你要是看出来是分层图的话大概不难?
#include<bits/stdc++.h>
using namespace std;
int n,m,k,len=0,last[5000001],dis[5000001];
bool v[5000001];
struct pp
{
int x,y,c,next;
};pp p[10000001];
struct node
{
int x,dis;
friend bool operator < (const node &x,const node &y)
{
return x.dis>y.dis;
};
};priority_queue<node > q;
void ins(int x,int y,int c)
{
int now=++len;
p[now]={x,y,c,last[x]};last[x]=now;
return ;
}
int dj(int ST,int ED)
{
memset(dis,63,sizeof(dis));memset(v,false,sizeof(v));dis[ST]=0;
node e;e.dis=dis[ST],e.x=ST;q.push(e);
while(q.size())
{//printf("*");
node x=q.top();q.pop();if(v[x.x]) continue ;v[x.x]=true ;
for(int i=last[x.x];i!=-1;i=p[i].next)
{
int y=p[i].y;if(dis[y]<dis[x.x]+p[i].c) continue ;
dis[y]=dis[x.x]+p[i].c;e.dis=dis[y],e.x=y;q.push(e);
}
}
int minn=1e9;
for(int i=0;i<=k;i++) minn=min(minn,dis[ED+i*n]);
return minn;
}
int main()
{
memset(last,-1,sizeof(last));
scanf("%d%d%d",&n,&m,&k);
int ST,ED;scanf("%d%d",&ST,&ED);ST++,ED++;//printf(">>%d %d\n",ST,ED);
for(int i=1;i<=m;i++)
{
int x,y,c;scanf("%d%d%d",&x,&y,&c);x++,y++;
for(int i=0;i<=k;i++) ins(i*n+x,i*n+y,c),ins(i*n+y,i*n+x,c);
for(int i=0;i<k;i++) ins(i*n+x,(i+1)*n+y,0),ins(i*n+y,(i+1)*n+x,0);
}
printf("%d",dj(ST,ED));
return 0;
}
P2939 [USACO09FEB]Revamping Trails G
#include<bits/stdc++.h>
using namespace std;
int n,m,k,len=0,last[5000001],dis[5000001];
bool v[5000001];
struct pp
{
int x,y,c,next;
};pp p[10000001];
struct node
{
int x,dis;
friend bool operator < (const node &x,const node &y)
{
return x.dis>y.dis;
};
};priority_queue<node > q;
void ins(int x,int y,int c)
{
int now=++len;
p[now]={x,y,c,last[x]};last[x]=now;
return ;
}
int dj(int ST,int ED)
{
memset(dis,63,sizeof(dis));memset(v,false,sizeof(v));dis[ST]=0;
node e;e.dis=dis[ST],e.x=ST;q.push(e);
while(q.size())
{//printf("*");
node x=q.top();q.pop();if(v[x.x]) continue ;v[x.x]=true ;
for(int i=last[x.x];i!=-1;i=p[i].next)
{
int y=p[i].y;if(dis[y]<dis[x.x]+p[i].c) continue ;
dis[y]=dis[x.x]+p[i].c;e.dis=dis[y],e.x=y;q.push(e);
}
}
int minn=1e9;
for(int i=0;i<=k;i++) minn=min(minn,dis[ED+i*n]);
return minn;
}
int main()
{
memset(last,-1,sizeof(last));
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
int x,y,c;scanf("%d%d%d",&x,&y,&c);
for(int i=0;i<=k;i++) ins(i*n+x,i*n+y,c),ins(i*n+y,i*n+x,c);
for(int i=0;i<k;i++) ins(i*n+x,(i+1)*n+y,0),ins(i*n+y,(i+1)*n+x,0);
}
int ST=1,ED=n;
printf("%d",dj(ST,ED));
return 0;
}
下面隆重介绍一道超强的题目:P3119 [USACO15JAN]Grass Cownoisseur G缩点后套一个分层图+最短路。码量很大,你要忍一下。
#include<bits/stdc++.h>
using namespace std;
int n,m,len=0,last[200001],dfsx[200001],low[200001],dfs_x=0,id[200001],point=0;
int q[800001],tot=0,siz[200001],k,dis[200001];
bool v[800001];
struct pp
{
int x,y,next;
};pp p[800001],L[800001];
void ins(int x,int y)
{
int now=++len;
p[now]={x,y,last[x]};last[x]=now;
return ;
}
bool cmp(const pp &x,const pp &y)
{
if(x.x!=y.x) return x.x<y.x;
return x.y<y.y;
}
void SH(int x)
{
low[x]=dfsx[x]=++dfs_x;
v[x]=true;q[++tot]=x;//printf("*");
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;
if(!dfsx[y]) SH(y),low[x]=min(low[x],low[y]);
else if(v[y]) low[x]=min(low[x],dfsx[y]);
}
if(dfsx[x]==low[x])
{
point++;
while(dfsx[x]<=dfsx[q[tot]])
{
siz[point]++;id[q[tot]]=point;
v[q[tot]]=false;tot--,dfs_x--;
}
}
return ;
}
void remake()
{
memset(last,-1,sizeof(last));memset(p,0,sizeof(p));len=0;
for(int i=1;i<=m;i++) L[i].x=id[L[i].x],L[i].y=id[L[i].y];
for(int i=1;i<=point;i++) siz[i+point]=siz[i];
sort(L+1,L+m+1,cmp);
for(int i=1;i<=m;i++)
{
if(L[i].x==L[i].y||(L[i-1].x==L[i].x&&L[i].y==L[i-1].y)) continue ;
for(int j=0;j<=k;j++) ins(j*point+L[i].x,j*point+L[i].y);
for(int j=0;j<k;j++) ins(j*point+L[i].y,(j+1)*point+L[i].x);
}
return ;
}
int spfa(int ST,int ED)
{
memset(dis,0,sizeof(dis));memset(v,true,sizeof(v));
int st=1,ed=2;q[1]=ST;v[ST]=false;dis[ST]=0;
while(st!=ed)
{
int x=q[st++];v[x]=true;//printf("%d ",x);
for(int i=last[x];i!=-1;i=p[i].next)
{
int y=p[i].y;if(dis[y]>dis[x]+siz[y]) continue ;
dis[y]=dis[x]+siz[y];if(v[y]) q[ed++]=y,v[y]=false;
}
}
return max(dis[ED],dis[ED+point]);
}
int main()
{
memset(last,-1,sizeof(last));memset(v,false,sizeof(v));
scanf("%d%d",&n,&m);k=1;
for(int i=1;i<=m;i++)
{
int x,y;scanf("%d%d",&x,&y);
ins(x,y);L[i].x=x,L[i].y=y;
}
for(int i=1;i<=n;i++)
{
if(!dfsx[i]) SH(i);
}
remake();
if(point==1) printf("%d",siz[point]);
else printf("%d",spfa(id[1],id[1]));
return 0;
}
cf的题Ehab and Path-etic MEXs口胡一下,不妨考虑考虑最差的情况如何取得。那么肯定是按照最小值取(也就是按着0,1,2)的顺序取。那么我们再考虑一下,我们只让它最多取到这三个数其中两个。那么就是最优解。(这题好像做过?)哦!注意一下链的情况。
#include<bits/stdc++.h>
using namespace std;
int n,m,len=0,last[4000001],du[4000001],ans[4000001],maxx=0,cnt=0;
struct pp
{
int x,y,next,num;
};pp p[4000001];
void ins(int x,int y,int num)
{
int now=++len;
p[now]={x,y,last[x],num};last[x]=now;
return ;
}
int main()
{
memset(last,-1,sizeof(last));
scanf("%d",&n);
for(int i=1;i<=n-1;i++)
{
int x,y;scanf("%d%d",&x,&y);
du[x]++,du[y]++;ins(x,y,i);ins(y,x,i);
}
for(int i=1;i<=n;i++) maxx=max(maxx,du[i]);
if(maxx<3)
{
for(int i=1;i<=n-1;i++) printf("%d\n",i-1);
return 0;
}
for(int i=1;i<=n;i++)
{
if(du[i]>=3)
{
for(int j=last[i];j!=-1;j=p[j].next) ans[p[j].num]=++cnt;
break ;
}
}
for(int i=1;i<=n-1;i++)
{
if(!ans[i]) ans[i]=++cnt;
}
for(int i=1;i<=n-1;i++) printf("%d\n",ans[i]-1);
return 0;
}
这个板块太多了等下最后一道题Cow and Snacks,这一题最大的作用就是搞人心态,就像11 16的那道愚蠢的转移题。那么它将你的注意力吸引到了先后顺序(连通块上),但!真正的问题只需要用并查集。秒了具体想法写代码里。
//哼哼哼,误入歧途了吧~,考虑一下重合最多的情况是最优的(也就是第一个取走两个,第二三四五只拿一个)
//所以我们尝试直接维护连通块,若两个点不在同一个块里。合并并开心,要是在一个块里,不合并并不开心。(呜呜呜QWQ)
//想想为什么?若是有先1 2,3 4,然后2 3是不是可能会出错?错!它可以先放2 3 进,再到1 2,3 4 。
//所以为什么可以这样维护呢,好吧说正事:若一个人喜欢x,y那么将其连边,然后一种合法的方案明显是一棵树感性画一下
//发现最优的解法就是树的的大小-1 ,所以...
//吃得少真的不会伤心嘛,我会的啊
#include<bits/stdc++.h>
using namespace std;
int n,m,fa[1000001],ans=0;
int findfa(int x)
{
if(fa[x]==x) return x;
return fa[x]=findfa(fa[x]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) fa[i]=i;
while(m--)
{
int x,y;scanf("%d%d",&x,&y);
int fx=findfa(x),fy=findfa(y);
if(fx!=fy) fa[fx]=fy;
else ans++;
}
printf("%d",ans);
return 0;
}