C# OpenCvSharp 矩阵计算-determinant、trace、eigen、calcCovarMatrix、solve

🚀 在C#中使用OpenCvSharp库进行矩阵操作和图像处理
在C#中使用OpenCvSharp库,可以实现各种矩阵操作和图像处理功能。以下是对所列函数的详细解释和示例,包括运算过程和结果。📊✨

1. determinant - 计算行列式 🧮

定义:

double determinant(InputArray mtx);
参数:

mtx:输入矩阵或图像
作用或原理:
计算矩阵行列式的值。必须保证行列相同。

示例:

using OpenCvSharp;
using System;

class Program
{
   
    static void Main()
    {
   
        Mat matrix = new Mat(new double[,] {
    {
    1, 2 }, {
    3, 4 } });
        double det = Cv2.Determinant(matrix);
        Console.WriteLine($"Determinant: {
     det}");
    }
}

运算过程:
矩阵 A = [[1, 2], [3, 4]] 的行列式计算如下:
[ \text{det}(A) = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2 ]

运算结果:

Determinant: -2
#矩阵 #行列式 #CSharp #OpenCvSharp

2. trace - 计算矩阵的迹 🔍

定义:

Scalar trace(InputArray mtx);
参数:

mtx:输入矩阵或图像
作用或原理:
计算矩阵的迹,即主对角线元素之和。

示例:

using OpenCvSharp;
using System;

class Program
{
   
    static void Main()
    {
   
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值