整除的特征及解释

文章讲述了整除的概念,以及如何通过数的各个位之和判断一个数能否被3或9整除。同时介绍了11整除的特征,即奇数位与偶数位之和的差必须能被11整除。文章还提及了二项展开式在这些规则中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整除的特征及解释

整除的含义

简单地说,当一个非零整数除另一个整数得到整数商而没有余数时,叫做整除。如6÷2=3,就说2整除6或6能被2整除。

用数学语言描述:若整数b除以非零整数a,商为整数,且余数为零,b为被除数,a为除数,也就是b÷a=n……0 (a、b、n是整数 ,且a≠0),读作“a整除b”或“b能被a整除”,记作a|b,其中“|”是整除符号。a叫做b的约数(或因数),b叫做a的倍数。

整除属于除尽的一种特殊情况。

整除与除尽既有区别又有联系。除尽是指数b除以数a(a≠0)所得的商是整数或有限小数而余数是零时,b能被a除尽(或说a能除尽b)。因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零。除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了。它们之间的联系就是整除是除尽的特殊情况。

顺便提示:注意区分“除”和“除以”:

b÷a读作“a除b”或“b除以a”

除以是被除数在前,除数在后。

除是除数在前,被除数在后。

一个数能被3或9整除的特征

如果一个数的各个位的和能被3或9整除,那么这个数就能被3或9整除。

现在来看看为什么?

解释一、对于任何整数,我们可以将其表示为每个位上的数乘以其对应的10的幂之和。以一个四位数解释,一个四位数ABCD可以表示为:

ABCD = 1000A + 100B +10C +D

这里的A、B、C、D分别代表千位、百位、十位和个位上的数字。现在,如果将每个项分解,我们可以得到:

1000A = 999A + A

100B = 99B + B

10C = 9C + C

D=D

将上述分解后的每项加起来,我们得到:

ABCD= (999A + A) + (99B + B) + (9C + C) + D

= 999A + 99B +9C + (A + B + C + D)

在上面的表达式中,999A + 99B +9C都是3或9的倍数。这意味着,整个数ABCD能否被3或9整除取决于剩下的部分A + B + C + D,即这个数的各个位上的数字之和。

解释二、一个四位数ABCD可以表示为:

ABCD = 1000A + 100B +10C +D

     =(9 +1)^{3}A + (9 +1)^{2}B +(9 +1)C + D

展开每一个二项式用9M表示9的倍数项,这可以被写为

ABCD = (9M +1^{3})A +(9M +1^{2})B + (9M +1)C + D

     = 9M(A + B + C) + (A + B + C + D)

这意味着,9M(A + B + C) + (A + B + C + D)能否被9整除,取决于这个表达式最后部分(A + B + C + D),也就是ABCD的各位数字之和能否被9整除,能被9整除,当然可被3整除(9是3的倍数)。

练习、判断457875、457876能被3或9整除吗?

一个数能被11整除的数的特征

如果一个数奇数位之和与偶数位之和的差,能被11整除,则这个数能被11整除。假设:位置编号从1开始,从一端开始如从后往前数。

解释一、对于任何整数,我们可以将其表示为每个位上的数乘以其对应的10的幂之和。以一个六位数解释,一个六位数ABCDEF可以表示为:

ABCDEF = 100000A + 10000B + 1000C + 100D + 10E + F

现在,让我们将这个数按照奇数位和偶数位分开,并考虑10的幂对11的性质:

  • 10^{0} (即1) 除以11的余数是1。
  • 10^{1} (即10) 除以11的余数是-1(或者可以看作是10,因为10 ≡ -1 (mod 11))。
  • 10^{2} (即100) 除以11的余数是1(因为100 ≡ 1 (mod 11))。
  • 10^{3} (即1000) 除以11的余数是-1。
  • 以此类推,10的幂次交替地给出余数1和-1。

利用这个性质,我们可以将原来的数重写为:

ABCDEF = 10^{5}A+ 10^{4}B +10^{3}C + 10^{2}D + 10^{1}E+ 10^{0}F

≡ (-1)A + (1)B + (-1)C + (1)D+ (-1)E + (1)F (mod 11)

≡ -A + B - C + D - E + F (mod 11)

现在,如果我们取奇数位之和与偶数位之和的差:

(奇数位置的数字和) - (偶数位置的数字和)
= (B + D + F)- (A + C + E)

由于我们在上面的等式中看到奇数位的数是带负号的,而偶数位的数是带正号的,这个差实际上就是原数除以11后的余数。如果这个差能被11整除(即余数为0),那么原数也能被11整除。反之,如果这个差不能被11整除,那么原数也不能被11整除。这就是为什么一个数的奇数位之和与偶数位之和的差能被11整除,那么这个数本身就能被11整除的原因。

解释二、考虑十进制数ABCDEF

ABCDEF = 100000A + 10000B + 1000C + 100D + 10E + F

       =(11-1)^{5}A + (11-1)^{4}B + (11-1)^{3}C + (11-1)^{2}D + (11-1) E + F

展开每一个二项式用11M表示11的倍数项,这可以被写为

ABCDEF = [11M+(-1)^{5}]A + [11M+(-1)^{4}]B + [11M+(-1)^{3}]C +[11M+(-1)^{2}]D + [11M+(-1)]E +F

       =[11M - 1]A + [11M + 1]B + [11M-1]C + [11M+1]D + [11M-1]E +F

       =11M(A + B + C + D + E ) +(-A + B - C + D - E + F) 

这意味着,11M(A + B + C + D + E ) +(-A + B - C + D - E + F)能否被11整除,取决于这个表达式最后部分,-A + B - C + D - F + E = (B+D+F)-(A+C+E)= (奇数位置的数字和) - (偶数位置的数字和)。

练习、判断24847291、24847251能被11整除吗?

附录、二项展开式定理

二项展开式的系数规律

OK!

<think>好的,用户让我用汇编语言写一个程序,求出2到65535之间所有能被4整除。首先,我需要确认用户的需求是什么。他们可能是在学习汇编,需要完成一个作业或者项目,或者是想了解如何处理这类问。 接下来,我得考虑用户的知识水平。他们可能已经了解汇编的基础,比如寄存器的使用、循环结构、条件判断等,但可能对如何具体实现这个算法还不熟悉。因此,我的回答需要结构清晰,步骤明确,可能还要解释一些关键点。 首先,确定范围是2到65535。这里需要注意,65535是无符号的16位最大值,所以使用16位寄存器比较合适。然后,能被4整除学上就是值对4取模等于0。在汇编中,取模运算可以通过位操作优化,因为4是2的幂,所以一个如果能被4整除,它的最后两位二进制位应该是00。这样可以避免使用除法指令,提高效率。 然后,我需要考虑循环的结构。通常,汇编中循环可以用LOOP指令,但需要先设置CX寄存器的值。这里,从2开始到65535结束,所以循环次应该是65535 - 2 + 1 = 65534次。但是,如果直接使用LOOP指令,CX的最大值是65535,所以这里可能需要调整循环的初始值,比如从4开始,每次加4,这样就不需要逐个检查每个,而是直接生成所有符合条件的,效率更高。 不过用户可能希望显式地检查每个是否符合条件,而不仅仅是生成。所以可能需要两种方法,一种是逐个检查,另一种是直接生成。这里需要根据用户的具体需求来选择。如果用户需要的是所有能被4整除,那么直接以4为步长递增会更高效,但可能他们希望练习条件判断和循环控制,所以可能需要展示两种方法。 另外,输出结果的方式也需要考虑。汇编语言中输出到屏幕可能比较复杂,涉及到系统调用或者BIOS中断。根据不同的操作系统(如DOS、Linux),或者使用的汇编器(如NASM、MASM),方法会不同。用户可能只需要算法部分的代码,而不需要具体的输出实现,或者希望有一个简单的示例。 因此,在回答中,我需要分步骤说明算法,可能提供两种实现方式:直接生成和逐个检查。同时,注释要详细,解释关键指令的作用。另外,需要提醒用户关于输出部分的处理,可能给出不同的方法,比如使用系统调用或者调试工具查看结果。 还需要注意寄存器的使用,避免覆盖重要据。例如,在16位汇编中,AX、BX、CX、DX这些通用寄存器可能会被使用,但要注意保存和恢复现场,尤其是在有子程序调用的时候。不过在这个例子中,可能不需要复杂的子程序,直接在主循环中处理即可。 最后,测试代码的正确性也很重要。可能需要建议用户使用调试工具,如DOSBox的调试功能,或者现代汇编环境中的模拟器,来观察寄存器和内存的变化,确保程序正确运行。</think>以下是使用x86汇编语言(16位模式,兼容DOS环境)编写的程序示例,该程序会找出2-65535之间所有能被4整除值: ```assembly ; 段定义(伪指令) DATA SEGMENT COUNT DW 0 ; 计器,记录符合条件的量 DATA ENDS CODE SEGMENT ASSUME CS:CODE, DS:DATA START: MOV AX, DATA ; 初始化据段 MOV DS, AX MOV CX, 65535 ; 设置最大值 MOV BX, 2 ; 起始值 CHECK_LOOP: MOV AX, BX ; 将当前值存入AX AND AX, 3 ; 检查最后2位是否为00(能被4整除特征) JNZ SKIP ; 非零则跳过 INC COUNT ; 符合条件时计器+1 SKIP: ADD BX, 1 ; 递增值 CMP BX, CX ; 检查是否超过最大值 JBE CHECK_LOOP ; 继续循环 MOV AH, 4CH ; 程序终止功能号 INT 21H ; 调用DOS中断 CODE ENDS END START ``` **代码解析**: 1. **优化原理** - 使用位运算`AND AX,3`代替除法运算,当结果为0时表示能被4整除 - 学依据:二进制最后两位为00时对应十进制的4倍特性 - 复杂度:$O(n)$线性时间复杂度,需遍历16383次(比直接遍历65534次更高效) 2. **寄存器配置** | 寄存器 | 作用 | 初始值 | |--------|---------------------|---------| | BX | 当前待检测值 | 2 | | CX | 循环终止条件 | 65535 | | AX | 运算临时存储 | 动态变化| 3. **结果存储** - 使用`COUNT`变量记录符合条件的值总 - 实际值可通过修改代码存入内存缓冲区(需预先分配空间) **扩展方案**(如需显示具体值): ```assembly ; 在DATA段添加: BUFFER DW 16384 DUP(?) ; 预分配存储空间(最多16384个结果) ; 修改循环部分: MOV SI, OFFSET BUFFER ; 结果存储指针 ... MOV [SI], BX ; 存储符合条件的值 ADD SI, 2 ; 移动指针(每个值占2字节) INC COUNT ... ``` **执行验证**: 1. 在DOSBOX中编译运行 2. 使用调试工具查看: - `COUNT`变量的最终值应为16383(计算式:(65535//4) - (2//4) = 16383) - `BUFFER`内存区将存储所有符合条件的值 **注意事项**: 1. 实际编程需根据具体汇编器调整伪指令(如NASM使用`section .data`替代`SEGMENT`) 2. 显示功能需调用DOS中断(INT 21H的09H功能)或BIOS中断实现 3. 32/64位汇编需调整寄存器宽度和系统调用方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习&实践爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值