一个有向图存在欧拉路:
在有向图中,如果图是弱连通的,并且图中除开两个顶点,其他所有顶点的入度等于出度,并且这两个点中,一个点入度比出度多1,另一个点出度比入度少1,那么该图存在欧拉路,这是个充要条件。
这个题中还要判断是是否连通,用并查集 记录判断下即可。
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int in[50],out[50];
int root[50];
void init()
{
for(int i=0;i<=25;i++){
root[i]=i;
}
}
int find(int x)
{
int temp=root[x];
if(x==root[x]) return x;
else{
return root[x]=find(root[x]);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n,i;
init();
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
char s[2000];
scanf("%d",&n);
getchar();
for(i=0;i<n;i++){
gets(s);
int l1=strlen(s);
in[s[0]-'a']++;
out[s[l1-1]-'a']++;
int ra=find(s[0]-'a');
int rb=find(s[l1-1]-'a');
if(ra!=rb) root[rb]=ra;
}
int flag1=0,flag2=0;
int flag3=0,time=0;
for(i=0;i<=25;i++){
if(in[i]||out[i]){
if(i==find(i))
time++;
}
if(in[i]-out[i]==1) {
flag1++;continue;
}
if(in[i]-out[i]==-1){
flag2++;continue;
}
if(in[i]!=out[i]) {
printf("The door cannot be opened.\n");
flag3=1;
break;
}
}
if(flag3==0){
if(time==1){
if(flag1==0&&flag2==0) printf("Ordering is possible.\n");
else if(flag1==1&&flag2==1) printf("Ordering is possible.\n");
else printf("The door cannot be opened.\n");
}
else
printf("The door cannot be opened.\n");
}
}
}