算法思想:
(1)首先确定该区间的中点位置:
mid = (low+high)/2
(2)然后将待查的key值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:
①若a【mid】>key,则由表的有序性可知a[mid..n].keys均大于K,因此若表中存在关键字等于Key的结点,则该结点必定是在位置mid左边的子表a[1..mid-1]中,故新的查找区间是左子表a[1..mid-1]。
②类似地,若a[mid]<K,则要查找的Key必在mid的右子表a[mid+1..n]中,即新的查找区间是右子表a[mid+1..n]。下一次查找是针对新的查找区间进行的。
因此,从初始的查找区间a[1..n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止
*********************************************************************************************************************************************"
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int a[100];
int n,i,key;
cin>>n>>key;//key关键字
for(i = 1; i <= n; i++)cin>>a[i];
sort(a+1,a+n+1);
for(i = 1; i <= n; i++)cout<<a[i]<<" ";
cout<<endl;
int low = 1;
int high = n;
int mid;
while(low <= high)
{
mid = (high + low) / 2;
if(a[mid] == key)break;
if(a[mid] > key)high = mid - 1;
else
low = mid + 1;
}
cout<<"位置:"<<mid<<endl;
return 0;
}