当前主流大模型文件格式解析对比

1. HuggingFace Transformers 格式(.bin / .safetensors

项目说明
用途训练/推理通用格式
支持平台HuggingFace Transformers, vLLM, Text Generation Inference (TGI), DeepSpeed 等
优点✅ 模型生态最丰富(LLaMA、Baichuan、ChatGLM 等) ✅ 支持训练+推理 ✅ 和 HuggingFace Hub 兼容好 ✅ .safetensors 更安全,支持 mmap 提升加载速度
缺点.bin 格式可能存在安全风险(Pickle 执行) ❌ 模型未压缩,占用显存大 ❌ 启动加载速度较慢,尤其是大型模型
推荐用途主流模型训练、vLLM/TGI高性能推理部署、研究复现等


🧩 2. GGUF 格式(.gguf,GGML 统一格式)

项目说明
用途本地低资源环境的量化推理
支持平台llama.cpp、koboldcpp、LM Studio、Ollama、text-generation-webui、MLC-LLM
优点✅ 支持 8/6/5/4/3bit 量化,显著减小模型体积 ✅ 可在 CPU、本地 GPU、甚至安卓/iOS 上运行 ✅ 启动快,占用小,适合离线/移动端部署 ✅ 与 llama.cpp、Ollama 完美兼容
缺点❌ 不支持训练 ❌ 不支持推理微调后的权重(部分量化损失信息) ❌ 模型结构较固定,功能不如 Transformers 丰富
推荐用途轻量本地推理、无 GPU 环境、移动端、便携式 AI 助手等场景


🧩 3. PyTorch 原生格式(.pt, .pth

项目说明
用途训练与实验研究
支持平台PyTorch 原生、Fairseq、OpenNMT、DeepSpeed 等
优点✅ 原生保存 PyTorch 模型权重、优化器、训练状态 ✅ 灵活性高,适合研究和自定义模型结构 ✅ 与 PyTorch 训练/微调流程无缝集成
缺点❌ 不适合直接部署服务(缺乏标准接口) ❌ 加载慢,占用高 ❌ 安全性弱(使用 pickle)
推荐用途训练阶段模型保存、中间调试、自主研发模型训练流程


🧩 4. Safetensors 格式(.safetensors

项目说明
用途替代 .bin,提高安全性与加载效率
支持平台HuggingFace Transformers、vLLM、text-generation-webui 等
优点✅ 零信任安全格式,防止 pickle 执行 ✅ 加载更快,支持内存映射(mmap) ✅ 支持模型切片并行加载
缺点❌ 不支持训练中间状态(如优化器参数) ❌ 一些老工具或脚本尚不兼容
推荐用途安全部署、云服务推理、高性能模型加载(推荐替代 .bin 使用)


🧩 5. ONNX 格式(.onnx

项目说明
用途跨平台、推理优化部署
支持平台ONNX Runtime, TensorRT, OpenVINO, DeepSparse 等
优点✅ 跨平台部署:x86、ARM、Web、边缘设备 ✅ 支持多种硬件推理引擎 ✅ 推理速度快,适合小型模型
缺点❌ LLM 转换复杂,兼容性差(如 LLaMA、ChatGLM 转换容易失败) ❌ 动态模型支持较弱 ❌ 仅适合推理,难以微调
推荐用途小模型部署到边缘/浏览器/嵌入式设备,如 BERT、TinyGPT、Whisper 等场景


🧩 6. TensorFlow 系列(.pb, .ckpt, SavedModel)

项目说明
用途TensorFlow 模型训练与部署
支持平台TensorFlow、TF Lite、Google Cloud AI
优点✅ 适用于 Google 生态(如 GCP AI 平台) ✅ TF Lite 可部署到移动端 ✅ SavedModel 格式结构清晰
缺点❌ 当前大模型主流生态已转向 PyTorch ❌ 工具链繁杂,格式繁多 ❌ HuggingFace 转换支持不完善
推荐用途在 TensorFlow 项目中部署 BERT、T5、Tiny GPT 等模型,适用于移动端应用或谷歌平台用户


📊 汇总对比表

格式支持推理支持训练量化支持安全性部署易用性推荐场景
.bin⚠️ 低(pickle)⭐⭐⭐⭐通用、微调、vLLM
.safetensors⚠️ 部分支持✅ 高⭐⭐⭐⭐⭐高性能安全部署
.gguf✅ 强✅ 高⭐⭐⭐⭐⭐本地部署,低资源运行
.pt/.pth⚠️ 部分⚠️ 低(pickle)⭐⭐自研训练流程
.onnx⚠️ 有限支持✅ 高⭐⭐⭐⭐推理优化、Web/移动端
.pb/.ckpt⚠️ 弱✅ 中⭐⭐TF 项目,谷歌平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值