A.枚举:https://codeforces.com/contest/1991/problem/A
可以取到的都是奇数位:
#include<bits/stdc++.h>
using namespace std;
int t,n;
int a[110];
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int maxx=0;
for(int i=1;i<=n;i+=2) maxx=max(maxx,a[i]);
cout<<maxx<<endl;
}
}
B.构造,位运算:https://codeforces.com/contest/1991/problem/B
在首尾之间最优解是b[i]=a[i]|a[i-1]:
AC代码:
#include<bits/stdc++.h>
using namespace std;
int t,n;
int b[100100],a[100010];
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n-1;i++) cin>>b[i];
for(int i=2;i<=n-1;i++){
a[i]=b[i]|b[i-1];
}
a[1]=b[1];
a[n]=b[n-1];
int f=0;
for(int i=1;i<=n-1;i++){
if((a[i]&a[i+1])==b[i]) continue;
f=1;
break;
}
if(f==1) cout<<-1<<endl;
else{
for(int i=1;i<=n;i++) cout<<a[i]<<" ";
cout<<endl;
}
}
}
C.构造:https://codeforces.com/contest/1991/problem/C
首先:通过操作无法改变任意两个数的相对奇偶性,也就是假如有一奇一偶,那么他们奇偶性一定不同,最后也就无法都化为0.
至于剩下的情况,我们不妨可以取他们的max与min,我们要让他们归0,也就一定要让他们变一样,这个问题等价于max=min,于是我们每次都取他们的平均数,这样就可以以指数级别递减。
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll t,n,a[200010];
ll cnt;
ll b[200010];
int kk;
ll res[200010];
int main(){
cin>>t;
while(t--){
cin>>n;
cnt=0;
for(int i=1;i<=n;i++) cin>>a[i];
set<ll> s;
for(int i=1;i<=n;i++) s.insert(a[i]);
int k[2]={0};
for(auto c=s.begin();c!=s.end();c++){
b[++cnt]=*c;
}
for(int i=1;i<=cnt;i++) k[b[i]%2]=1;
if(k[0]&&k[1]){
cout<<-1<<endl;
continue;
}
ll l,r;
kk=0;
while(1){
l=1e9,r=0;
for(int i=1;i<=cnt;i++) l=min(b[i],l);
for(int i=1;i<=cnt;i++) r=max(r,b[i]);
if(l==0&&r==0) break;
int mid=(l+r)/2;
res[++kk]=mid;
for(int i=1;i<=cnt;i++) b[i]=abs(mid-b[i]);
}
cout<<kk<<endl;
for(int i=1;i<=kk;i++){
cout<<res[i]<<" ";
}
cout<<endl;
}
}
D.构造/思维:https://codeforces.com/contest/1991/problem/D
不得不说,这一题还是很考验大家观察力的。
首先,一定是需要4种的(因为1,3,4,6互连)
其次,我们只用4种,我们考虑把下标i的染成第i%4+1
证明:对于同色的都可以表示为,因此他们二进制串的前两位表示的就是k,因此异或一定会变成0,也就是他们异或值是最小权值是4,因此一定是4的倍数,也就不是质数。
AC代码:
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n;
cin >> n;
if (n < 6) {
if (n == 1)
cout << 1 << '\n' << "1" << endl;
else if (n == 2)
cout << 2 << '\n' << "1 2" << endl;
else if (n == 3)
cout << 2 << '\n' << "1 2 2" << endl;
else if (n == 4)
cout << 3 << '\n' << "1 2 2 3" << endl;
else if (n == 5)
cout << 3 << '\n' << "1 2 2 3 3" << endl;
} else {
cout << 4 << '\n';
for (int i = 1; i <= n; i++)
cout << i % 4 + 1 << ' ';
cout << endl;
}
}
int main() {
int t;
cin >> t;
while (t--)
solve();
}
E.构造/二分图:https://codeforces.com/contest/1991/problem/E
1.假如不为二分图,Alice的必胜策略就是每次都说1或者2.
2.假如为二分图,Bob的必胜策略就是在两个颜色中挑1/2放在他们各自染色的地方,当某个(1或者2,这里假设1)填满时,假如又是(1,3),那么就选3去填2剩下的部分。显然这不会存在同色同边的情况。
F.枚举,构造,贪心:https://codeforces.com/contest/1991/problem/F
首先,我们不妨看看只求一个三角形:排个序,然后找连续3个是否可以组成。
而换成两个三角形:我们通过模拟得出规则
我们排好序,任意取出A...B...C...D...E...F,我们看看是否可以组成两个三角形:
我们先假设空格
显然,每一个三角形的最长边在CDEF中选:
每一个优化可以看出被“吸”过去
1.我们取C为最长边,那么就是ABC,DEF,而我们发现AB,DE可以优化为C/F前面的连续两个,也就是ABC...DEF
2,我们取D为最长边,我们假设A不属于D(其他同理),于是就是BCD,AEF,显然我们把BC优化成D的前面两个,AE优化成F前两个(前面有阻挡那就只可以保持现在了)
3.选EF也是同一道理。
因此:1.我们先扫一下是否有两个不交的3元素区间满足。
2.再枚举连续6个元素的区间。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int n,q,fk;
int a[100010];
int rt[7];
bool vis[7];
bool ans;
void checkk(){
int A1,A2,zhi1,zhi2;
for(int i=6;i>=1;i--){
if(vis[i]==1){
A1=i;
break;
}
}
for(int i=6;i>=1;i--){
if(vis[i]==0){
A2=i;
break;
}
}
zhi1=rt[A1],zhi2=rt[A2];
for(int i=A1-1;i>=1;i--){
if(vis[i]==1) zhi1-=rt[i];
}
for(int i=A2-1;i>=1;i--){
if(vis[i]==0) zhi2-=rt[i];
}
if(zhi1<0&&zhi2<0) ans=1;
}
void dfs(int u,int st)//u:选了u个到组1,从st开始
{
if(u==3){
checkk();
return;
}
if(st>=7) return;
for(int i=st;i<=6;i++){
vis[st]=1;
dfs(u+1,i+1);
vis[st]=0;
}
}
bool check(int l,int r){
int ck[60]={0};
int cnt=0;
for(int i=l;i<=r;i++){
ck[++cnt]=a[i];
}
sort(ck+1,ck+cnt+1);
//分开的3个
int minn=100,maxx=-1;
for(int i=1;i<=cnt-2;i++){
if(ck[i]+ck[i+1]>ck[i+2]){
minn=min(minn,i);
maxx=max(maxx,i);
}
}
if(minn+3<=maxx) return 1;
//连续
for(int i=1;i<=cnt-5;i++){
ans=0;
for(int j=i;j<=i+5;j++) rt[j-i+1]=ck[j];
dfs(0,1);
if(ans) return 1;
}
return 0;
}
int main(){
cin>>n>>q;
for(int i=1;i<=n;i++) cin>>a[i];
while(q--){
int l,r;
cin>>l>>r;
if(r-l+1>=48) cout<<"YES"<<endl;
else{
if(check(l,r)==1) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
}