Python 科技研究之 05 机器学习中的 XOR 和甜甜圈问题

本文探讨了机器学习中的非线性分类问题,通过Python阐述了如何解决XOR和甜甜圈问题。XOR问题无法通过简单的线性模型解决,而需要借助神经网络。甜甜圈问题同样需要非线性方法,如神经网络或支持向量机。文章通过实例展示了如何用Python实现这些解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机科学的机器学习领域专注于创建可以从经验中学习的算法。机器学习的目标是创建算法,当它们接触到额外的数据时,可以自动提高它们在给定任务上的性能。处理输入和输出之间的非线性相关性是机器学习的核心难点之一。XOR 问题和甜甜圈问题是机器学习中非线性分类问题的两个著名示例,本文将对此进行介绍。

异或问题

异或问题

XOR 问题是分类问题的一个众所周知的例子,其目标是将输入分为两类之一。XOR 问题的类别是“0”和“1”,输入是二进制数据。当输入和类之间存在非线性可分连接时,就会出现问题。换句话说,不可能用一条简单的直线将输入分为两类。

要理解为什么 XOR 问题是非线性可分的,请考虑以下真值表:

截屏2023-02-21 08.26.51.png

当且仅当恰好有一个输入为“1”时,此真值表的输出为“1”。因为没有平面(或直线)可以将输入分为两类,所以这种关系不能线性分离。

解决异或问题需要更复杂的算法,如人工神经网络,它可以识别输入和输出之间的非

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值