使用单层感知器掌握多类分类:从头开始的 MATLAB 实现

本文介绍了如何使用单层感知器进行多类分类,详细阐述了数学公式、损失函数、梯度计算和更新规则。通过MATLAB实现,在Iris数据集上训练模型,并展示了训练过程和性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

单层感知器是最简单的神经网络架构之一,由输入层和输出层组成。因此,它可以用于各种分类任务,包括多类分类。

问题表述

对于多类分类问题,我们有一个包含n输入样本的数据集,每个样本都有d特征和总c类别。我们的目标是使用单层感知器学习从输入特征到类标签的映射。

单层感知器架构

单层感知器由连接到输出层的输入层组成。对于多类分类问题,输出层具有c神经元,每一类都有一个神经元。输入特征乘以权重并添加到偏差以产生逻辑。然后,将 softmax 函数应用于 logits 以获得类别概率。

用于多项分类架构的单层感知器

数学公式

我们将输入特征矩阵表示为X(形状:nxd),权重矩阵表示为W(形状:dxc),偏差矩阵表示为b(形状:1 xc),其中n是样本数,d是特征数,c是数量类。logits 由 给出Z=X*W+b,softmax 函数应用于 logits 以获得类别概率。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值