介绍
单层感知器是最简单的神经网络架构之一,由输入层和输出层组成。因此,它可以用于各种分类任务,包括多类分类。
问题表述
对于多类分类问题,我们有一个包含n输入样本的数据集,每个样本都有d特征和总c类别。我们的目标是使用单层感知器学习从输入特征到类标签的映射。
单层感知器架构
单层感知器由连接到输出层的输入层组成。对于多类分类问题,输出层具有c神经元,每一类都有一个神经元。输入特征乘以权重并添加到偏差以产生逻辑。然后,将 softmax 函数应用于 logits 以获得类别概率。
数学公式
我们将输入特征矩阵表示为X(形状:nxd),权重矩阵表示为W(形状:dxc),偏差矩阵表示为b(形状:1 xc),其中n是样本数,d是特征数,c是数量类。logits 由 给出Z=X*W+b,softmax 函数应用于 logits 以获得类别概率。