PAT1080 Graduate Admission (30)

5 篇文章 0 订阅
题目链接:

http://www.nowcoder.com/pat/5/problem/4310

题目描述:

(1)分数分为Ge和Gi两部分,按照总分给学生排名次,如果总分一样,则按照Ge来排;
(2)每个学生都有几个志愿,按照志愿高低给学生分配学校;
(3)对于名次一样又报了同一学校的学生,该学校只要接收了一个就得接收全部,即便超出了原定的招生名额;

题目分析:

每次模拟题写得总是很冗长的感觉啊。
需要注意的是写学校选学生那部分。

代码:
#include<iostream>
#include<vector>
#include<string.h>
#include<algorithm>
#include<set>
using namespace std;
struct Student{
    int stuID;
    int GE;
    int GI;
    int EI;
    int rank;
    vector<int> preferred;
};
bool operator <(const Student& stu1,const Student& stu2){
    return stu1.EI == stu2.EI ? stu1.GE>stu2.GE:stu1.EI > stu2.EI;
}
struct School{
    int quota;
    int lowest;
    set<int> admission;
};
int main()
{
    int N, M, K;
    scanf("%d%d%d",&N,&M,&K);
    Student* graduates = new Student[N];
    School* schools = new School[M];
    for (int i = 0; i < M; i++){
        scanf("%d",&schools[i].quota);
    }
    for (int i = 0; i < N; i++){
        scanf("%d%d",&graduates[i].GE,&graduates[i].GI);
        graduates[i].EI = graduates[i].GE + graduates[i].GI;
        graduates[i].stuID = i;
        int prefer;
        for (int j = 0; j < K;j++){
            scanf("%d",&prefer);
            graduates[i].preferred.push_back(prefer);
        }
    }
    sort(graduates,graduates+N);
    for (int i = 0; i < N; i++){
        if (i>0 && graduates[i].EI == graduates[i - 1].EI && graduates[i].GE == graduates[i - 1].GE){
            graduates[i].rank = graduates[i - 1].rank;
        }
        else{
            graduates[i].rank = i + 1;
        }
        for (int j = 0; j < K; j++){
            int schID = graduates[i].preferred[j];
            if (schools[schID].quota>0 || graduates[i].rank == schools[schID].lowest){
                schools[schID].lowest = graduates[i].rank;
                schools[schID].quota--;
                schools[schID].admission.insert(graduates[i].stuID);
                break;
            }
        }
    }
    for (int i = 0; i < M; i++){
        if (schools[i].admission.empty()){
            printf("\n");
        }
        else{
            auto it = schools[i].admission.begin();
            printf("%d",*it++);
            for (;it!=schools[i].admission.end(); it++){
                printf(" %d",*it);
            }
            printf("\n");
        }
    }
    return 0;
}
逻辑斯蒂回归(Logistic Regression)是一种常用的类算法,常用于二类问题中,如预测研究生能否被录取。Kaggle的Graduate Admission数据集包含了申请人的各项信息,例如GRE数、TOEFL数、大学GPA、科研经验、推荐信等,目标变量通常是“是否被录取”(是否被研究生院接受)。 首先,我们来理解数据集属性的意义: 1. GRE Score: 研究生入学考试成绩 2. TOEFL Score: 英语水平测试得 3. University Rating: 学校排名 4. SOP: Statement of Purpose(个人陈述)的质量 5. LOR: Letter of Recommendation(推荐信)的质量 6. CGPA: 学术平均绩点 7. Research: 科研经历(0或1) 8. Chance of Admit: 录取概率(这个不是原始数据,而是我们最终需要预测的目标) 数据预处理步骤主要包括: 1. **加载数据**:使用pandas库读取csv文件并查看基本信息。 2. **缺失值处理**:检查是否存在缺失值,并选择填充、删除或估算策略。 3. **编码类变量**:将类别型特征转换成数值型,如使用one-hot encoding或者LabelEncoder。 4. **标准化或归一化**:对于数值型特征,通常会做数据缩放,如Z-score标准化或min-max归一化。 5. **划训练集和测试集**:通常采用80%的数据作为训练集,剩余的20%作为测试集。 6. **特征工程**:如果有必要,可以创建新的特征或调整现有特征。 逻辑斯蒂回归的预测原理是基于sigmoid函数,该函数将线性组合后的输入映射到0到1之间,表示事件发生的可能性。模型学习如何调整权重系数,使得给定输入条件下,正类(如录取)的概率最大化。 实现过程(Python示例,假设使用sklearn库): ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 1. 加载数据 data = pd.read_csv('Admission_Predict.csv') # 2. 数据预处理 # ... 缺失值处理、编码、标准化等操作 # 3. 划特征和目标 X = data.drop('Chance of Admit', axis=1) y = data['Chance of Admit'] # 4. 划训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 5. 特征缩放 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 6. 创建模型并拟合 model = LogisticRegression() model.fit(X_train_scaled, y_train) # 7. 预测 y_pred = model.predict(X_test_scaled) # 8. 评估模型性能 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值