蓝桥杯 算法训练 最大的算式

题目:

问题描述
  题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。例如:
  N=5,K=2,5个数字分别为1、2、3、4、5,可以加成:
  1*2*(3+4+5)=24
  1*(2+3)*(4+5)=45
  (1*2+3)*(4+5)=45
  ……

输入格式
  输入文件共有二行,第一行为两个有空格隔开的整数,表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。

输出格式
  输出文件仅一行包含一个整数,表示要求的最大的结果
  
样例输入
5 2
1 2 3 4 5

样例输出
120

样例说明
  (1+2+3)*4*5=120

思路:

dp[i][j]表示前i个数有j个乘号的最大值。

dp[i][j]=max(dp[i][j],dp[k-1][j-1]*sum(k,i)); k为前i个数中任意一个位置。

1<=k<=i

代码:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
using namespace std;
long long dp[20][20];//dp[i][j]表示前i个数中有j个乘号时,所得最大值
int sum[20];//sum[i]表示前i个数之和
int main()
{
    int N, K;
    scanf("%d%d",&N,&K);
    memset(dp,0,sizeof(dp));
    memset(sum,0,sizeof(sum));
    int nums[20];
    for (int i = 1; i <= N; i++){
        scanf("%d",&nums[i]);
        sum[i] = sum[i - 1]+nums[i];
    }
        for (int i = 1; i <= N; i++){
            dp[i][0] = sum[i];
        }
        for (int i = 2; i <= N; i++){
            int t = min(i - 1, K);
            for (int j = 1; j <= t; j++){
                for (int k = 2; k <= i; k++){
                    dp[i][j] = max(dp[i][j], dp[k - 1][j - 1] * (sum[i] - sum[k - 1]));
                }
            }
        }
        printf("%lld\n", dp[N][K]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值