我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树1,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
1) T的根结点为R,其类型与串S的类型相同;
2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历2序列。
输入格式
输入的第一行是一个整数N(0<=N<=10),第二行是一个长度为2^N的“01”串。
输出格式
输出包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
样例输入
3
10001011
样例输出
IBFBBBFIBFIIIFF
这一题分析以后,我们知道原来输入的数字是叶子节点,0是B,1是I
我们也容易知道 B+B => B , I+I => I , B+I | I+B | F+B | F+I | F+F => F
我们按照这个规则建树就行了。
继续观察,发现所有的内部节点的度都为2,这样所有节点的数目就为 2*size-1
因为我们明确知道有多少个节点,所以一般用数组来存储容易实现。
具体实现看代码。
题目描述的建树方法是自上而下的,我用的方法是自下而上的。
先对输入的叶子进行两两合并,
if( tree[i].c == 'I' && tree[i+1].c == 'I' )
tree[size].c = 'I';
else if( tree[i].c == 'B' && tree[i+1].c == 'B' )
tree[size].c = 'B';
else
tree[size].c = 'F';
tree[size].lchild = i;
tree[size].rchild = i+1;
然后再对新的节点进行两两合并 直到最后只剩下一个节点 就是根了