2n皇后问题

思路是:先解决白皇后问题,把白皇后在棋盘中放下以后,标记其位置,然后在放黑皇后。

注意  :在白皇后深度搜索之后记得回溯。

import java.util.Scanner;
import java.util.prefs.BackingStoreException;

public class Main {
	public static int[][] a;//棋盘
	public static int[] b;//存放白皇后的位置
	public static int[] c;//存放黑黄后的位置
	public static int n;
	public static int sum = 0 ;
	public static int count = 0 ;
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();
		a = new int[n+1][n+1];
		b = new int[n+1];//白皇后的位置
		c = new int[n+1];//黑黄后的位置
		for(int i = 1 ; i <= n ; i++  ){
			for(int j = 1 ; j <= n ; j++ ){
				a[i][j] = sc.nextInt();
			}
		}
		
		BacktrackWhite(1);
		System.out.println(sum);
		//System.out.println(count);
	}
	public static boolean canPlaceWhite(int row,int col ){//不在同一列,不在同一个斜线上
		
	
	
		for(int i = 1 ; i < row ; i++ ){//i -->行
			if(b[i]==col||Math.abs((i-row))==Math.abs(col-b[i]))
				return false;
		}
		return true;
		
	}
	public static boolean canPlaceBlack(int row , int col){
		for(int i = 1 ; i < row ; i++ ){
			if(c[i] == col||Math.abs(i-row) == Math.abs(c[i]-col)){//黑黄后同样不能放在同一列,同一斜线上
				return false;
			}
		}
		return true;
	}
	public static void  BacktrackWhite(int row){
		if(row > n ){
			BacktrackBlack(1);//白皇后放完后在放置黑黄后
		}else{
			for(int i = 1 ; i <= n ; i++){//i-->列
				if(a[row][i] == 1){
					if(canPlaceWhite(row,i)){
						a[row][i] = 2 ;//白皇后在棋盘放置后设置棋盘数为2
						b[row] = i ;
						BacktrackWhite(row+1);
						a[row][i] = 1;//添加了这一句!!!这一句不能少,试探完后要恢复状态
					}
				}
				
			}
		}
	}
	public static void BacktrackBlack(int row ){
		if(row > n ){
			sum++;
		}else{
			for(int i = 1 ; i <= n ; i++ ){
				if(a[row][i] == 1){
					if(canPlaceBlack(row, i)){
						c[row] = i;
						BacktrackBlack(row+1);
					}
				}
				
			}
		}
	}
}


根据给定的问题描述和代码,这是一个关于蓝桥杯C++题目中的n皇后问题。题目要求在一个n*n的棋盘上放置n个黑皇后和n个白皇后,使得任意两个黑皇后和任意两个白皇后都不在同一行、同一列或同一条对角线上。代码使用递归和回溯的方法来解决这个问题。 代码中的pd1函数用于判断黑皇后的位置是否合法,pd2函数用于判断白皇后的位置是否合法。fang1函数用于放置黑皇后,fang2函数用于放置白皇后。最后,通过调用fang1函数来计算总共有多少种放法。 需要注意的是,代码中使用的p1和p2数组分别表示黑皇后和白皇后的位置,qi数组表示棋盘上每个位置是否可以放皇后。 因此,根据给定的代码,可以计算出总共有多少种放法。 #### 引用[.reference_title] - *1* [蓝桥杯 基础练习 2n皇后问题C/C++(可作DFS练习)](https://blog.csdn.net/qq_43838669/article/details/129306490)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [蓝桥杯2n皇后问题](https://blog.csdn.net/qq_59611494/article/details/128682794)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值