随着机器学习的快速发展,优化算法成为了提高模型性能的重要组成部分。本文将介绍两种常用的优化技术:随机搜索和XGBoost,并提供相应的源代码示例。
随机搜索是一种基于随机采样的优化方法,用于寻找模型超参数的最优组合。它通过在给定的超参数范围内进行随机采样,并评估每个超参数组合的性能来寻找最佳组合。以下是一个使用随机搜索优化超参数的示例代码:
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
# 加载数据集
iris