[DP] boj1440

/* 
 * 在一条直线上摆着N堆石子,现要将石子有序的合并成一堆,
 * 规定如下:每次只能移动相邻的2堆石子合并,合并花费为将的一堆石子的数量。
 * 设计一个算法,将这N堆石子合并成一堆的总花费最小(或最大)。
 * 那么最优子结构是什么呢?如果有N堆,第一次操作肯定是从n-1个对中选取一对进行合并,
 * 第二次从n-2对中选取一对进行合并,以此类推……
 * 递推公式如下:f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+sum(i,j));
*/
import java.util.*;
import java.math.*;
public class Main 
{
	static int min(int a,int b){return (a>b)? b:a;}
	public static void main(String[] args)
	{
		Scanner cin=new Scanner(System.in);
		int Max_Int=200000000;
		while(true)
		{
			int n,i,v,k;
			int s[]=new int[250];
			int sum[]=new int[250];
			int f[][]=new int [252][250];
			n=cin.nextInt();
			if(n==0) break;
			sum[0]=0;
			for(i=1;i<=n;i++)
			{
				s[i]=cin.nextInt();
				sum[i]=sum[i-1]+s[i];
			}
			for(i=1;i<=n;i++)
				f[i][i]=0;
			for(v=1;v<n;v++)        //1堆有v个的遍历一遍,先是2个的。。。然后是3个的。。。
				for(i=1;i<=n-v;i++)
				{
					int j=i+v;
					f[i][j]=Max_Int;
					int add=sum[j]-sum[i-1];
					for(k=i;k<=j-1;k++)
						f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+add);
				}
			
			System.out.println(f[1][n]);
		}
	}
}
#include <iostream>
#include<cstdio>
using namespace std;
#define M 201
#define INF 1000000000
int n,f[M][M],sum[M][M],stone[M],s[M][M];
int main()
{
	int i,j,k,t;
	while(scanf("%d",&n)&&n)
	{
        for(i=1;i<=n;i++)
            scanf("%d",&stone[i]);
        for(i=1;i<=n;i++)
        {
            f[i][i]=0;
            s[i][i]=i;
            sum[i][i]=stone[i];
            for(j=i+1;j<=n;j++)
                sum[i][j]=sum[i][j-1]+stone[j];
        }
        for(int len=2;len<=n;len++)//归并的石子长度
        {
            for(i=1;i<=n-len+1;i++)//i为起点,j为终点
            {
                j=i+len-1;
                f[i][j]=INF;
                for(k=s[i][j-1];k<=s[i+1][j];k++)
                {
                    if(f[i][j]>f[i][k]+f[k+1][j]+sum[i][j])
                    {
                        f[i][j]=f[i][k]+f[k+1][j]+sum[i][j];
                        s[i][j]=k;
                    }
                }
            }
        }
        printf("%d/n",f[1][n]);
    }
    return 0;
}
#include <cstdio>
#include <iostream>
#include <stdio.h>
using namespace std;
const int size = 1001;
int w[size]; /* node weights */
int d[size]; /* depth */
int q[size]; /* working region */
int t; /* current size of working region */
//标记当前未处理的节点个数 
int m; /* current node */
int ans;
void combine(int t);
void mark(int k, int p);
void build(int b);
int main()
{
    int i, j, k, n;
    for(; ;)
    {
        scanf("%d", &n);
        // n =getnum();
        if(!n) break;
            --n;
        for(j = 0; j <= n; j++)
        {
            scanf("%d", &w[j]);
            // w[j] = getnum();
        }
        if(!n)
        {
            printf("0/n");
            continue;
        } 
        m=n;
        t=1;
        ans = 0;
        q[0]=1000000000; /* infinity */
        q[1]=w[0];
        for(k=1;k<=n;k++) 
        {
            while( w[k]>=q[t-1] ) //从左往右扫描,第一次遇到a, b, c且a > b, c > a,则将a, b合并 
            { 
                combine(t);
            }
            q[++t]=w[k]; 
        }
        while(t > 1) 
            combine(t);
        printf("%d/n",ans);
    }    
}
void combine(int k)
{
    int j,d,x;
    m++; 
    w[m]=x=q[k-1]+q[k];//注意合并成为一棵树,新节点放在w数组的后面 
    ans += x;
    t--;
    for (j=k;j<=t;j++) 
        q[j]=q[j+1];
    for (j=k-2;q[j]<x;j--) 
        q[j+1]=q[j];
    q[j+1]=x;
    while (j>0 && q[j-1]<=x) 
    {
        d=t-j; combine(j); j=t-d;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值