/*
* 在一条直线上摆着N堆石子,现要将石子有序的合并成一堆,
* 规定如下:每次只能移动相邻的2堆石子合并,合并花费为将的一堆石子的数量。
* 设计一个算法,将这N堆石子合并成一堆的总花费最小(或最大)。
* 那么最优子结构是什么呢?如果有N堆,第一次操作肯定是从n-1个对中选取一对进行合并,
* 第二次从n-2对中选取一对进行合并,以此类推……
* 递推公式如下:f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+sum(i,j));
*/
import java.util.*;
import java.math.*;
public class Main
{
static int min(int a,int b){return (a>b)? b:a;}
public static void main(String[] args)
{
Scanner cin=new Scanner(System.in);
int Max_Int=200000000;
while(true)
{
int n,i,v,k;
int s[]=new int[250];
int sum[]=new int[250];
int f[][]=new int [252][250];
n=cin.nextInt();
if(n==0) break;
sum[0]=0;
for(i=1;i<=n;i++)
{
s[i]=cin.nextInt();
sum[i]=sum[i-1]+s[i];
}
for(i=1;i<=n;i++)
f[i][i]=0;
for(v=1;v<n;v++) //1堆有v个的遍历一遍,先是2个的。。。然后是3个的。。。
for(i=1;i<=n-v;i++)
{
int j=i+v;
f[i][j]=Max_Int;
int add=sum[j]-sum[i-1];
for(k=i;k<=j-1;k++)
f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+add);
}
System.out.println(f[1][n]);
}
}
}
#include <iostream>
#include<cstdio>
using namespace std;
#define M 201
#define INF 1000000000
int n,f[M][M],sum[M][M],stone[M],s[M][M];
int main()
{
int i,j,k,t;
while(scanf("%d",&n)&&n)
{
for(i=1;i<=n;i++)
scanf("%d",&stone[i]);
for(i=1;i<=n;i++)
{
f[i][i]=0;
s[i][i]=i;
sum[i][i]=stone[i];
for(j=i+1;j<=n;j++)
sum[i][j]=sum[i][j-1]+stone[j];
}
for(int len=2;len<=n;len++)//归并的石子长度
{
for(i=1;i<=n-len+1;i++)//i为起点,j为终点
{
j=i+len-1;
f[i][j]=INF;
for(k=s[i][j-1];k<=s[i+1][j];k++)
{
if(f[i][j]>f[i][k]+f[k+1][j]+sum[i][j])
{
f[i][j]=f[i][k]+f[k+1][j]+sum[i][j];
s[i][j]=k;
}
}
}
}
printf("%d/n",f[1][n]);
}
return 0;
}
#include <cstdio>
#include <iostream>
#include <stdio.h>
using namespace std;
const int size = 1001;
int w[size]; /* node weights */
int d[size]; /* depth */
int q[size]; /* working region */
int t; /* current size of working region */
//标记当前未处理的节点个数
int m; /* current node */
int ans;
void combine(int t);
void mark(int k, int p);
void build(int b);
int main()
{
int i, j, k, n;
for(; ;)
{
scanf("%d", &n);
// n =getnum();
if(!n) break;
--n;
for(j = 0; j <= n; j++)
{
scanf("%d", &w[j]);
// w[j] = getnum();
}
if(!n)
{
printf("0/n");
continue;
}
m=n;
t=1;
ans = 0;
q[0]=1000000000; /* infinity */
q[1]=w[0];
for(k=1;k<=n;k++)
{
while( w[k]>=q[t-1] ) //从左往右扫描,第一次遇到a, b, c且a > b, c > a,则将a, b合并
{
combine(t);
}
q[++t]=w[k];
}
while(t > 1)
combine(t);
printf("%d/n",ans);
}
}
void combine(int k)
{
int j,d,x;
m++;
w[m]=x=q[k-1]+q[k];//注意合并成为一棵树,新节点放在w数组的后面
ans += x;
t--;
for (j=k;j<=t;j++)
q[j]=q[j+1];
for (j=k-2;q[j]<x;j--)
q[j+1]=q[j];
q[j+1]=x;
while (j>0 && q[j-1]<=x)
{
d=t-j; combine(j); j=t-d;
}
}