题目 1117: K-进制数

 

题目描述

考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.

考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.

例:
1010230 是有效的7位数
1000198 无效
0001235 不是7位数, 而是4位数.

给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数.

假设2 <= K <= 10; 2 <= N; 4 <= N+K <= 18.

输入

两个十进制整数N和K

输出

十进制表示的结果

样例输入

2
10
 

样例输出

90

思路

当时想的是枚举0的个数,然后用排列组合减去相邻0的情况个数。后来发现当0的个数大于三的时候,计算情况太复杂了,写不出来。

正解:

写出10进制的前几位的答案数,然后找规律。

借别人的图:

#include <bits/stdc++.h>

//#define int long long
const int MAXN = 1e6 + 7;
using namespace std;
int dp[MAXN];
signed main() {
    int n, k;
    cin >> n;
    cin >> k;
    dp[1] = k - 1;
    dp[2] = k * (k - 1);
    for(int i = 3; i <= n; i ++){
        dp[i] = (dp[i - 1] + dp[i - 2]) * (k - 1);
    }
    cout << dp[n] << endl;
    return 0;
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值