约瑟夫环(O(n) 求出,解决超时问题)

假设10个人从0 - 9 编号, 报到3淘汰

第一轮,10人场:0 1 2 3 4 5 6 7 8 9 淘汰者下标为2

第二轮,  9人场:3 4 5 6 7 8 9 0 1   淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 10

第三轮,  8人场:6 7 8 9 0 1 3 4      淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 9

第四轮,  7人场:9 0 1 3 4 6 7         淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 8

第五轮,  6人场:3 4 6 7 9 0            淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 7

第六轮,  5人场:7 9 0 3 4               淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 6

第七轮,  4人场:3 4 7 9                  淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 5

第八轮,  3人场:9 3 4                     淘汰者下标仍然为2,在上一轮中下标为 (2 + 3)% 4

第九轮,  2人场:9 3                        淘汰者下标为0,在上一轮中下标为 (0 + 3)% 3

第十轮,  1人场:3                           淘汰者下标为0,在上一轮中下标为(0 + 3)% 2

对于n个人, 报到m淘汰的情况,

我们可以肯定最后一个被淘汰在当前这一轮,肯定下标为0,那么我们就能根据以上规律推出他的上一轮下标为(0 + m)% 2 (因为他的上一轮肯定是2人场)

然后我们递推下去

直到推出这个人在n人场的下标即可。如果编号是1 - n 则可以让这个下标加一即可。

#include <bits/stdc++.h>

//#define int long long
const int MAXN = 1e6 + 7;
const int mod = 1000000007;
using namespace std;
signed main() {
    int n, k;
    cin >> n >> k;
    int ans = 0;
    for(int i = 2; i <= n; i ++){
        ans = (ans + k) % i;
    }
    cout << ans + 1 << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值