题目 1434: [蓝桥杯][历届试题]回文数字

题目描述

观察数字:12321,123321  都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。

本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。

输入

一个正整数  n  (10< n< 100),  表示要求满足的数位和。

输出

若干行,每行包含一个满足要求的5位或6位整数。 
数字按从小到大的顺序排列。 
如果没有满足条件的,输出:-1 

样例输入

44 

样例输出

99899
499994
589985
598895
679976
688886
697796
769967
778877
787787
796697
859958
868868
877778
886688
895598
949949
958859
967769
976679
985589
994499

思路

直接模拟6位或5位 然后再加上对每一个数是否回文判断肯定超时。

因此直接模拟3位或2位,强行回文。对于3位,可以直接枚举三位数然后凑成6位回文。

对于2位,只能回文到4位数,然后暴力枚举中间的呢个第三位数,构成5位回文。

总结

没有看到从小到大输出,第一次先枚举了第三位数,又枚举了两位数,造成顺序问题。

#include <bits/stdc++.h>

//#define int long long
const int MAXN = 1e6 + 7;
using namespace std;
string to_s(int x){
    string s = "";
    while(x > 0){
        s += (x % 10 + '0');
        x /= 10;
    }
    return s;
}
signed main() {
    int n;
    cin >> n;
    bool f = 0;
    for(int j = 10; j < 100; j ++){
        for(int i = 0; i <= 9; i ++){
            if((n - i) % 2 == 1)continue;
            int x = j;
            int sum = 0;
            while(x > 0){
                sum += (x % 10);
                x /= 10;
            }
            if(sum == (n - i) / 2){
                cout << j << i << to_s(j) << endl;
                f = 1;
            }
        }
    }
    for(int i = 100; i < 1000; i ++){
        if(n % 2 == 1)break;
        int x = i;
        int sum = 0;
        while(x > 0){
            sum += (x % 10);
            x /= 10;
        }
        if(sum == n / 2){
            cout << i << to_s(i) << endl;
            f = 1;
        }
    }
    if(!f)cout << -1 << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值