题目描述
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
输入
一个正整数 n (10< n< 100), 表示要求满足的数位和。
输出
若干行,每行包含一个满足要求的5位或6位整数。
数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
样例输入
44
样例输出
99899 499994 589985 598895 679976 688886 697796 769967 778877 787787 796697 859958 868868 877778 886688 895598 949949 958859 967769 976679 985589 994499
思路
直接模拟6位或5位 然后再加上对每一个数是否回文判断肯定超时。
因此直接模拟3位或2位,强行回文。对于3位,可以直接枚举三位数然后凑成6位回文。
对于2位,只能回文到4位数,然后暴力枚举中间的呢个第三位数,构成5位回文。
总结
没有看到从小到大输出,第一次先枚举了第三位数,又枚举了两位数,造成顺序问题。
#include <bits/stdc++.h>
//#define int long long
const int MAXN = 1e6 + 7;
using namespace std;
string to_s(int x){
string s = "";
while(x > 0){
s += (x % 10 + '0');
x /= 10;
}
return s;
}
signed main() {
int n;
cin >> n;
bool f = 0;
for(int j = 10; j < 100; j ++){
for(int i = 0; i <= 9; i ++){
if((n - i) % 2 == 1)continue;
int x = j;
int sum = 0;
while(x > 0){
sum += (x % 10);
x /= 10;
}
if(sum == (n - i) / 2){
cout << j << i << to_s(j) << endl;
f = 1;
}
}
}
for(int i = 100; i < 1000; i ++){
if(n % 2 == 1)break;
int x = i;
int sum = 0;
while(x > 0){
sum += (x % 10);
x /= 10;
}
if(sum == n / 2){
cout << i << to_s(i) << endl;
f = 1;
}
}
if(!f)cout << -1 << endl;
return 0;
}