[洛谷]P1890 gcd区间

这篇博客介绍了如何利用线段树算法高效地求解区间内所有数的最大公约数(GCD)。通过举例说明了对于三个数求GCD的原理,并提出整体思路,即区间GCD等于左半区间GCD与右半区间GCD的GCD。因此,采用线段树数据结构可以有效地实现这一计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 思路

         求区间GCD,已三个数GCD为例, 

         设三个数为a,b,c. _gcd(a, b, c) = _gcd(_gcd(a, b) ,c).

         整体思路, 全部数的gcd等于左半边的gcd和右半边gcd. 所以,思路使用线段树求gcd就好.

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1005;
int a[N], tree[N<<2];
int n, m;
int lc(int p ) {
    return p << 1;
}
int rc(int p ) {
    return p << 1 | 1;
}
void pushup(int p, int l, int r) {
    tree[p] = __gcd(tree[lc(p)], tree[rc(p)]);
}
void buildTree(int p, int l, int r) {
    if(l == r) {
        tree[p] = a[l];
        return ;
    }
    int mid = l + r >> 1;
    buildTree(lc(p), l, mid);
    buildTree(rc(p), mid+1, r);
    pushup(p, l, r);

}

int query(int p, int l, int r, int ql , int qr) {
    if(l >= ql && r <= qr) {
        return tree[p];
    }
    int mid = l + r >> 1;
    int res = 0;
    if( ql <= mid ) {
        res = query(lc(p), l, mid , ql, qr);
    }
    if ( qr > mid ) {
        res = __gcd(res, query(rc(p), mid+1, r, ql, qr));
    }
    return res;
}

int main() {
    cin >> n >> m;
    for(int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
    }
    buildTree(1, 1, n);

    for(int i = 1; i <= m; i++) {
        int x, y;
        scanf("%d%d", &x, &y);
        printf("%d\n", query(1, 1, n, x, y));
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值