Leetcode 3404. Count Special Subsequences

1. 解题思路

这道题是事实上这次的周赛最难的一道题目,不过也是有点巧思在内。

最开始我的想法就是按照乘积构成pair,然后考察同一乘积下的所有的pair找出其中满足条件的四元组 ( p , q , r , s ) (p, q, r, s) (p,q,r,s),不过后来发现这种方式就会深陷限制条件的泥潭,无法快速地求得最终的答案。

后来看了一下大佬们的思路,发现他们核心思想也是差不多,就是用一个counter先对pair进行分组,不过他们的核心是变换了一下公式,将 p × r = q × s p \times r = q \times s p×r=q×s变成了 p q = s r \frac{p}{q} = \frac{s}{r} qp=rs,因此,只需要按照 p q \frac{p}{q} qp进行分组,就可以绕开限制条件,构造出一个有序数列,使得我们在考察任意一个 ( r , s ) (r, s) (r,s)二元组时,之前记录下的 ( p , q ) (p, q) (p,q)二元组都必然是满足条件的。

当然,由于python对于除法事实上经常无法做到完全相同,因此这里事实上在记录时并没有使用除数本身,而是使用了两个元素除去最大公约数之后的pair进行记录,即用分数的形式对结果进行记录,确保答案的准确性。

2. 代码实现

给出python代码实现如下:

class Solution:
    def numberOfSubsequences(self, nums: List[int]) -> int:
        n = len(nums)
        cnt = defaultdict(int)
        ans = 0
        for r in range(3, n-2):
            q = r-2
            for p in range(q-1):
                _gcd = gcd(nums[p], nums[q])
                cnt[(nums[p] // _gcd, nums[q] // _gcd)] += 1
                
            for s in range(r+2, n):
                _gcd = gcd(nums[r], nums[s])
                ans += cnt[(nums[s] // _gcd, nums[r] // _gcd)]
        return ans

提交代码评测得到:耗时1863ms,占用内存61MB。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值