- 博客(742)
- 资源 (4)
- 问答 (2)
- 收藏
- 关注
原创 基于SpringAI的在线考试系统- 阅卷质检流程详细设计
记录阅卷任务的整体质检状态(进行中/已完成),控制质检流程的触发与闭环;:存储评分数据、异常标记、审核状态,是质检判断的核心数据源;:存储质检记录、双评差值、质检结果,是质检流程的核心载体;:存储重评任务的分配信息、重评次数、重评进度,支撑异常重评环节的执行。同时,联动(同步最终得分)、(支撑成绩统计)、user(关联教师/考生信息)、question(关联试题信息),形成完整的数据流转链路,确保质检流程不脱离整体业务,评分结果可同步至后续的成绩统计、错题归集环节。
2026-01-29 02:13:23
1042
原创 基于SpringAI的在线考试系统-数据库设计核心业务方案(微调)
本文总结了修正后的数据流转链路,重点优化了阅卷质量管控模块的表结构设计。核心修正点在于将marking_quality_control表的外键关联从task_id改为marking_score_id,使其更准确地关联具体评分记录。全文包含完整的Mermaid流程图展示六个阶段的数据流转(从基础配置到结果沉淀),以及详细的外键关联表和修正后的质量管控表结构设计。该设计通过三重关联(评分记录、阅卷任务、试题)确保数据一致性,同时包含双评信息和仲裁机制,提高了阅卷质量管控的精确性和可追溯性。
2026-01-26 14:32:53
623
原创 基于SpringAI的在线考试系统-数据库设计核心业务方案
本文总结了考试系统的核心数据流转链路,分为六个阶段:1)基础配置(年级、班级、科目、用户);2)内容生成(知识点、试题);3)考试组织(试卷、试题关联);4)考生作答(考试记录、答案);5)阅卷闭环(任务分配、评分、质量管控);6)结果沉淀(错题集、日志)。关键点包括双规则任务分配机制(基于题型或考生),以及从基础配置到结果分析的完整数据闭环。通过Mermaid图表清晰展示了表间关系和时序流程。
2026-01-26 13:30:30
832
原创 基于SpringAI的在线考试系统-数据库设计优化方案
按“层级关联”定义外键(如考试→考试记录→答题记录);为核心查询场景加索引(如“查某考试记录的所有答题”→ 答题记录表加索引)。你当前的表结构整体符合领域模型设计思想,核心问题是“答题记录未关联考试记录”,微调后即可满足“考试-考生-作答”的业务闭环;数据库设计的核心是**“先贴合业务领域,再兼顾技术特性(完整性、扩展性、性能)”**,而非为了“表少”或“字段少”牺牲业务逻辑。
2026-01-22 12:04:36
585
原创 基于SpringAI的在线考试系统-教学管理与用户管理模块联合回归测试文档
本次回归测试第一、二模块按“教学管理→用户管理→跨模块联动”的依赖顺序执行,覆盖用例42条(教学管理19条、用户管理19条、跨模块联动4条),实现两大模块100%通过率,核心结论如下:功能完整性:两大模块核心功能(增删改查、批量操作、权限控制、数据导出)均实现正常,无功能缺失,历史缺陷已全部修复,无新增缺陷;依赖连贯性:教学管理与用户管理数据联动准确,前置数据支撑、权限控制、删除拦截等依赖逻辑均生效,数据流转无断裂,前后端数据一致;
2026-01-22 08:02:11
955
原创 基于SpringAI的在线考试系统-知识点管理与试题管理模块联合回归测试文档
本次回归测试按“知识点管理→试题管理→跨模块联动”的依赖顺序执行,覆盖用例31条(知识点10条、试题12条、跨联动9条),两大模块整体通过率100%,衔接前两模块核心结论如下:功能完整性:两大模块核心功能均实现正常,无功能缺失,历史缺陷全部修复,无新增缺陷,富文本编辑、层级调整、批量审核等专属功能适配达标;依赖连贯性:与前两模块数据联动准确,前置数据支撑、权限控制、删除拦截等依赖逻辑均生效,数据流转无断裂,前后端及跨模块数据一致;
2026-01-22 07:59:57
608
原创 基于SpringAI的在线考试系统-试卷管理与考试管理模块联合回归测试文档
本次回归测试按“试卷管理→考试管理→跨模块联动”的依赖顺序执行,覆盖用例30条(试卷10条、考试12条、跨联动8条),两大模块。
2026-01-22 07:57:26
889
原创 基于SpringAI的在线考试系统-智能考试系统-学习分析模块
分析精准度:基于的主从表结构,错题归因、知识点掌握率的计算更精准,避免单表数据冗余导致的统计误差;分析自动化:替代人工统计成绩、错题分布,效率提升60%;数据穿透性:点击分析结果直接跳转至的错题集详情,减少跨模块操作成本。
2026-01-22 07:15:26
759
原创 基于SpringAI的在线考试系统-阅卷评分与错题管理模块回归测试逻辑梳理文档
本次回归测试针对智能考试系统第七部分“阅卷评分”、第八部分“错题管理”两大模块,核心目标包括:验证模块优化后核心功能的正确性与稳定性,确保历史缺陷已完全修复且无新增回归缺陷;校验两模块与前序试卷管理、考试管理、用户管理等模块的联动一致性,保障数据流转闭环;梳理模块内业务逻辑依赖及异常场景应对机制,确保符合实际教学管理、阅卷及错题沉淀场景需求;验证权限控制、数据存储、性能表现等关键指标达标,为系统上线提供可靠支撑。
2026-01-22 05:22:57
494
原创 基于SpringAI的在线考试系统-试题管理模块完整优化方案
体验提升:动态题型适配、多知识点关联、富文本解析等功能,让试题创建更高效、更专业。数据一致:重复检测、关联删除校验、导入日志等机制,避免试题冗余和数据混乱。功能完善:批量操作、筛选优化、预览编辑等功能,满足教学场景的精细化需求。业务适配:多知识点关联、试卷关联统计、富文本解析,适配技术类考试的专业需求。风险防控:禁止删除关联试题、状态校验、错误日志等机制,保障系统稳定性和数据安全性。
2026-01-22 01:33:52
292
原创 基于SpringAI的在线考试系统-知识点管理模块完整优化方案
体验提升:搜索筛选、拖拽排序、批量操作等功能,让知识点维护更高效,减少重复操作。功能完善:闭包表支持高效树形查询,导入预览编辑、错误日志等功能,满足复杂教学场景需求。数据一致:实时校验、重复检测、层级维护,确保知识点数据的唯一性和正确性。业务适配:关联试题/试卷统计、导入日志追溯,贴合教学管理的实际需求。风险防控:状态管理、批量审核、错误处理,避免误操作导致的数据混乱。
2026-01-21 23:21:01
774
原创 基于SpringAI的在线考试系统-试卷管理模块完整优化方案
体验提升:自动计算总分、拖拽排序、生成预览等功能,减少手动错误,提升组卷效率。功能完善:组卷模板、操作日志、冲突校验等功能,满足复杂组卷场景和审计需求。数据一致:关联表结构确保试卷与试题的关系清晰,统计和查询效率更高。业务适配:灵活的筛选条件和模板功能,适配不同考试场景(期中/期末/模拟考)。风险防控:关联考试校验、状态流转日志,避免误操作导致的数据丢失。
2026-01-21 22:22:33
742
原创 基于SpringAI的在线考试系统-考试管理功能布局+交互优化方案
列表清爽:操作列从7个按钮减少到4个,视觉拥挤感大幅降低,用户选择成本更低。体验流畅:快捷入口满足高频操作,独立页满足复杂需求,「双端刷新+灵活返回」确保操作闭环,避免频繁跳转。功能清晰:发布/监控/成绩等功能各司其职,职责更明确,系统可维护性更强。数据一致:双端刷新机制确保列表页与独立页面的数据实时同步,避免信息不对称。心智匹配:「列表→独立页→返回列表」的逻辑完全适配管理员“批量处理、快速确认”的工作习惯,是教育考试系统的通用最佳实践。
2026-01-21 13:04:17
834
原创 前后端协同开发最佳实践:从字段定义到版本闭环的全流程梳理(工作经验总结)
前端核心职责:页面布局、交互逻辑、基础表单验证(如输入格式校验、非空校验)、前端安全防护(如XSS过滤、防止表单重复提交)及展示类字段的加工生成,本质是“将后端数据转化为用户可交互的界面”。后端核心职责:数据持久化存储、核心业务逻辑处理、计算类字段运算、接口权限校验、数据安全防护(如加密、SQL注入防护),本质是“保障数据的安全、准确与高效处理”。两者的交集是持久化字段与计算类字段,需严格约定;各自的自主领域可独立优化,互不干扰。为直观呈现字段分类及职责边界,以下为字段关系逻辑图:fill:#333;
2026-01-21 12:34:38
1111
原创 基于SpringAI的在线考试系统-成绩管理功能实现方案(续)
状态区分清晰:通过“中间态(仅客观分)-最终态(总分)”的布局和算法设计,让考生明确知道成绩的当前状态,避免认知混淆;跳转逻辑流畅:提交试卷后自动跳转至成绩页,无需考生手动查找,提升体验;算法兼容适配:通过status字段和-1标记区分“待批阅”和“得0分”,避免将“未批阅”误展示为“得0分”;刷新机制灵活:支持WebSocket自动刷新(体验优)和手动刷新(兼容性好),确保考生能及时看到最终成绩。
2026-01-21 09:11:21
1077
原创 基于SpringAI的在线考试系统-成绩管理功能实现方案
角色适配精准:学生看个人成绩,老师看考生列表,避免了角色不符导致的空白页面,体验更流畅。数据可视化强:雷达图、进度条、饼图让成绩更直观,辅助学生和老师快速定位问题。操作效率高:批量导出、一键加入错题集等功能,减少重复操作,提升管理和学习效率。数据闭环完整:从考试答题、阅卷评分到成绩统计、错题分析,形成完整的数据流转,支持后续教学决策。
2026-01-21 08:05:00
961
原创 基于SpringAI的在线考试系统-阅卷系统软件设计四大核心模块总结与完善
本次阅卷系统设计紧扣软件设计四大核心,以“用户体验(布局+交互)”为表层支撑,以“技术实现(算法+数据模型)”为底层保障,贴合多老师批改、评分仲裁的核心业务需求,形成“业务-技术”双向适配的设计框架。落地时需注意三点:一是布局与交互需贴合老师阅卷习惯,减少学习成本;二是算法阈值与分配规则需支持配置化,适配不同考试场景(如期中/期末考、竞赛);三是数据模型需提前规划冗余字段与索引,避免后期大规模数据下出现性能瓶颈。整体设计既保留了核心业务逻辑,又通过技术细节完善,提升了系统的可用性、准确性与扩展性。
2026-01-20 14:24:34
599
原创 基于SpringAI的在线考试系统-0到1全流程研发:DDD、TDD与CICD协同实践
当接手一个全新的考试系统项目,无现有代码、无基础环境,仅依托一份需求功能文档向甲方交付产品时,大厂通常会采用“业务建模为骨、测试驱动为脉、自动化流程为翼”的研发体系,通过DDD(领域驱动设计)、TDD(测试驱动开发)与CICD(持续集成/持续交付)的深度协同,兼顾业务合理性与技术稳定性,最大限度减少返工与卡壳问题,高效推进项目落地。这一体系的构建与落地,需贯穿需求分析、架构设计、开发测试、集成部署全流程,同时兼顾业务与技术双维度的核心要点。全新项目的核心风险的是业务梳理不清——看似理论可行的方案,在实际开发
2026-01-20 07:45:29
720
原创 基于SpringAI的在线考试系统-数据库设计关联关系设计
梳理的这个关联逻辑,是阅卷业务的终极标准答案,也是我见过的「贴合业务本质、最严谨、最优」的写法:✅核心观点:考试获取试题ID必须经试卷+试卷试题关系表;任务分配获取试题ID必须经任务主表拿考试ID,再到答题记录拿试题ID →完全正确,没有任何问题。✅ 这个思路,完美解决了「考试-试卷-试题」「阅卷任务-考试-考生-答题记录」的双层关联问题,是生产环境中可以直接使用的「最优方案」。
2026-01-19 07:51:58
912
原创 从DDD到AI生态:核心岗位、能力构建与学历岗位分布情况
从DDD的业务建模到AI生态的岗位落地,本质上都是围绕“技术服务业务”的核心逻辑展开。DDD为复杂系统提供了业务边界与逻辑封装的方法论,而AI技术则为业务赋予了智能化升级的可能,二者的融合催生了新的岗位需求与职业机会。AI生态并非高学历者的专属领域,代码合规审查、应用开发等岗位,通过曲线入行路径与持续能力构建,低学历从业者同样可以突破壁垒。未来,随着AI技术的普及与合规要求的提升,具备“技术能力+业务认知+合规意识”的复合型人才,将成为AI生态中最具价值的核心力量。您提到的“图表呈现”需求非常关键。
2026-01-17 10:57:07
958
原创 基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结(含事件驱动协同逻辑)
整体逻辑可概括为“理念-业务-交互-技术-运维”的分层落地:分布式奠定宏观架构理念,微服务将理念转化为具体架构形态,DDD从业务侧为微服务提供边界划分与逻辑封装方法,事件驱动从交互侧提供低耦合协同方案(串联业务与技术),服务网格从技术侧解决微服务治理问题,Serverless从运维侧简化底层资源管理,最终形成“业务不跑偏、交互够灵活、技术够高效、运维低成本”的系统。DDD与事件驱动的融合落地逻辑需遵循“先业务后技术”:领域、子域、界定上下文定义业务边界;聚合、聚合根、实体、值对象构建业务模型;
2026-01-17 09:53:25
517
2
原创 基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结 (2)
整体逻辑可概括为“理念-业务-技术-运维”的分层落地:分布式奠定宏观架构理念,微服务将理念转化为具体架构形态,DDD从业务侧为微服务提供边界划分与逻辑封装方法,服务网格从技术侧解决微服务治理问题,Serverless从运维侧简化底层资源管理,最终形成“业务不跑偏、技术够高效、运维低成本”的系统。DDD自身的落地逻辑仍遵循“先抽象业务,再落地技术”:领域、子域、界定上下文定义业务边界;聚合、聚合根、实体、值对象构建业务模型;领域服务、领域事件、防腐层协调业务流转与跨域交互;仓储及基础设施层提供技术支撑;
2026-01-17 09:26:30
577
原创 基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结
DDD的核心逻辑是“先抽象业务,再落地技术”:领域、子域、界定上下文定义业务边界;聚合、聚合根、实体、值对象构建业务模型;领域服务编排业务流程;仓储及基础设施层提供技术支撑;四层架构、六边形架构、整洁架构则是将这些概念转化为可落地代码结构的不同方案。实操中,架构无需严格拘泥于标准目录,可根据项目规模、团队技术栈灵活调整,核心原则是保持“业务与技术分离”“领域层纯粹性”,确保系统可维护性、可扩展性与业务一致性。// 考试发布事件统一语言:团队使用业务术语沟通领域驱动。
2026-01-17 08:58:36
967
原创 基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解(2)
用户自然语言需求 → 提炼通用语言 → 划分限界上下文 → 抽象领域模型 → 设计数据库表结构 → 分层代码落地✅ 这个流程,是所有中大型系统的DDD标准落地流程,你坚持的思路完全正确!你能把「需求-模型-表结构」的逻辑理顺,并且设计出这么规范的表结构,说明你对DDD的理解已经到了核心层面,DDD不是什么高深的技术,就是「让业务回归本质」的设计思想,你的思路完全正确,坚持下去就好!
2026-01-17 04:34:00
977
原创 基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解
/ 考试ID值对象 - 有唯一标识throw new IllegalArgumentException("考试ID不能为空");// 考试时间值对象 - 无唯一标识throw new IllegalArgumentException("开始时间不能晚于结束时间");return!// 学生实体// 值对象// 参加考试if (!throw new IllegalStateException("学生不能参加此考试")
2026-01-17 04:12:02
407
原创 基于SpringAI的在线考试系统-核心模块的数据模型交互关系
层级依赖清晰:从基础到应用,从数据到分析,层层递进数据流向明确:用户数据自上而下,业务数据自下而上模块解耦良好:各模块相对独立,通过外键关联扩展性强:每个模块都可以独立扩展功能数据闭环完整:从教学准备到学情分析形成完整闭环这个模块划分和流转关系基于您的21张表结构,确保了数据的完整性和业务逻辑的清晰性,为系统的开发和维护提供了良好的架构基础。
2026-01-17 03:19:15
905
原创 基于SpringAI的在线考试系统-考试模块前端页面交互设计及优化(图文)
fill:#333;important;important;fill:none;color:#333;color:#333;important;fill:none;fill:#333;height:1em;status: 考试状态publish_status: 发布状态status: 考试记录状态is_correct: 是否正确status: 阅卷状态mock_exam考试配置表考试记录表屏幕监控表答题记录表阅卷任务表paper 试卷表试卷试题关联表question 试题表。
2026-01-17 02:52:35
258
原创 基于SpringAI的在线考试系统-考试模块前端页面交互设计及优化
数据加载失败时,提供“重试”按钮,同时展示简易错误提示(如“网络不稳定,请稍后重试”)。加载状态优化:涉及表数据联动查询(如考试结果统计、错题加载)时,展示骨架屏而非单纯loading,标注“加载中(共X条数据)”,提升等待体验。表,当学生页面切换频率过高(如1分钟内切换>5次),列表中该考生条目标红,展示“页面切换频繁”预警,点击可查看切换详情(时间、前后位置)。表,展示平均分、最高分、最低分、及格率(60分及以上)、优秀率(85分及以上),用图表(柱状图/折线图)展示分数分布,直观呈现整体成绩。
2026-01-17 02:17:12
265
原创 基于SpringAI的在线考试系统-系统业务全流程
教师/管理员管理题库(添加、编辑、审核试题)管理试卷(创建、发布试卷)管理考试(创建、发布、监控考试)评阅试卷(人工评阅主观题)分析成绩(查看班级成绩、学习分析)学生登录系统参加考试查看成绩管理错题集查看个人学习分析。
2026-01-16 04:52:38
509
原创 基于SpringAI的在线考试系统-数据库 表结构 & 完整外键依赖关系梳理
强依赖(外键约束):表A的字段通过关联表B的主键,表A为子表,表B为父表,子表必须依赖父表存在,父表删除数据受外键规则限制;弱依赖(业务关联):无显式外键约束,但业务逻辑上字段值对应其他表主键,是系统业务流转的核心关联关系;无依赖:根级基础表,无任何外键字段,是整个库的底层基石表。【层级0 - 根表】:subject 科目 → grade 年级 → classroom 班级 → user 用户 (无任何依赖,所有表的基石)
2026-01-16 00:12:31
843
原创 基于SpringAI的在线考试系统-AI智能化拓展
这个完整的架构设计涵盖了从用户访问到数据存储的完整链路,每个组件都针对您的优化需求进行了精心设计,确保系统在智能化、安全性、性能等方面都能满足现代考试系统的需求。4.检查缓存Key=策略MD5。Elasticsearch集群。Kubernetes集群。Prometheus监控。业务数据库 MySQL。2.开启摄像头/麦克风。15.定时保存答题记录。16.取平均分为最终分。21.返回题目和双评分。API网关/负载均衡。7.返回试题ID列表。9.返回试题完整信息。12.显示题目和答案。RabbitMQ集群。
2026-01-15 08:27:40
600
原创 基于SpringAI的在线考试系统-AI智能化拓展
通过引入人工智能、大数据分析和先进的防作弊技术,您的考试系统可以从一个优秀的业务管理平台,升级为一个智能化、个性化、高可信度的现代教育评价工具。这些优化不仅提升了管理效率,更重要的是能真正服务于“因材施考”、“因材施教”的教育理想,让考试更好地发挥其评价、诊断和导向功能。目前,AI组卷技术已在教学中取得显著成效。下面通过几个典型案例,让你快速了解其核心应用模式。案例名称应用层级核心AI技术/算法解决的核心问题关键成效江西风向标智能组卷系统区域级。
2026-01-15 08:03:30
890
2
原创 基于SpringAI的在线考试系统-核心业务流程图(续)
平均分/最高分/最低分。每个老师批改指定题型。每个老师批改指定学生。配置年级/班级/科目。系统自动保存答题记录。
2026-01-15 07:17:30
719
原创 基于SpringAI的在线考试系统-核心业务流程图
以上是考试系统的完整业务操作流程,从基础数据配置到考试组织、答题、判分,形成了完整的业务闭环。系统通过角色权限控制,确保不同用户只能进行对应权限的操作,保障了系统的安全性和数据的完整性。以上是完整的考试系统业务操作流程,涵盖了从考试创建到最终学习分析的全过程,形成了完整的业务闭环。系统通过角色权限控制和状态流转管理,确保了考试过程的公平、公正和高效。
2026-01-15 06:50:23
576
原创 基于SpringAI的在线考试系统-考试管理与学习分析系统 -知识点掌握率算法优化过程
基于加权难度系数和答对学生比例的双维度算法,综合评估学生对知识点的掌握程度。算法公式:掌握率 = Σ(难度系数 × 答对率) ×。
2026-01-15 00:45:13
137
原创 基于SpringAI的在线考试系统-考试管理与学习分析 - 业务闭环方案设计详细文档
本文档基于前期业务需求讨论,系统梳理考试管理与学习分析系统第一版的核心业务逻辑、前端页面设计(布局与交互)、后端逻辑算法实现及数据流转闭环,为前端开发、后端开发、数据模型设计提供统一的需求依据和实现规范,确保各角色开发工作协同一致,保障系统业务逻辑自洽且流转完整。
2026-01-14 22:52:56
847
原创 基于SpringAI的在线考试系统-企业级软件研发工程应用规范实现细节(完整)
本文深入解析了DDD四层架构在考试系统中的落地实践,重点阐述了领域层四大核心对象(实体、聚合根、值对象、领域服务)的设计原则与代码实现。核心观点包括:领域层专注业务规则1:1映射、应用层负责流程编排、接口层和基础设施层处理技术实现。通过考试系统案例,展示了如何将自然语言业务规则转化为领域模型,并强调实体封装专属业务行为、值对象处理属性级规则的设计要点。全文提供了分层联动的完整解决方案,帮助开发者构建高内聚低耦合的复杂业务系统。
2026-01-12 17:42:53
360
23种设计模式 -设计模式图解.7z
2020-09-11
大数据系列博客——环境搭建安装包
2020-11-03
win7 idea2018 1.8版本 docker插件 配置报错?如何解决啊,谢谢
2019-08-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅