- 博客(4)
- 收藏
- 关注
原创 什么是脑电逆问题
我们采集到的头皮脑电,是由脑袋里面的神经元簇构成信号源,传导到头皮。所以如果要从采集到的头皮脑电推导脑电信号源的位置,就需要把脑电在脑内的投影求出来,这就是逆问题(inverse problem)。目前常用的解决办法有三种:LAURA、LORETA、sLORETA。(see in http://www.uzh.ch/keyinst/loreta.htm)求解脑电逆问题需要先解决脑电正问题(forward problem),即脑袋里面的信号源发出来的电信号,是怎样传导到头皮的。这就引出了大脑建...
2022-02-11 12:14:37 870
翻译 Localizing oscillatory sources using beamformer techniques:part 1
Localizing oscillatory sources using beamformer techniques:part 1Introduction在本教程中,我们将继续处理预处理教程中描述的数据集。下面,我们将重复代码来选择试验并预处理第一个教程中描述的数据(基于触发器的试验选择,可视化工件拒绝)。在本教程中,您将学习如何在频域中应用波束形成技术。您将学习如何计算适当的时间-频率窗口...
2018-11-27 23:53:28 373
转载 独立成分分析 ( ICA ) 与主成分分析 ( PCA )
独立成分分析 ( ICA ) 与主成分分析 ( PCA )书上写的是:主成分分析假设源信号间彼此非相关,独立成分分析假设源信号间彼此独立。主成分分析认为主元之间彼此正交,样本呈高斯分布;独立成分分析则不要求样本呈高斯分布。在利用最大化信息熵的方法进行独立成分分析的时候,需要为源信号假定一个概率密度分布函数g’,进而找出使得g(Y)=g(Wx)的信息熵最大的变换W,即有Y=s。我的问题...
2018-11-27 22:09:26 1274
翻译 MNE溯源fieldtrip官网教程
MNE溯源fieldtrip官网教程Introduction在本教程中,您可以找到有关如何使用最小范数估计进行源重构的信息,以重构单个主题的事件相关字段(MEG)。我们将使用预处理教程中描述的数据集(基于触发的试验选择、事件相关平均和平面梯度),我们还将使用属于同一主题的解剖图像。我们将重复代码来选择试验并预处理事件相关平均和平面梯度教程中描述的数据。我们假设读者已经清楚了预处理和与事件相关的...
2018-11-27 21:50:03 9874 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人