- 博客(6)
- 资源 (3)
- 收藏
- 关注
原创 一文读懂朴素贝叶斯模型
1 概述朴素贝叶斯模型是很经典的统计学习模型,在人工智能的上古时期就已经被人们发明出来。对这个模型的学习需要有一定的概率论和数理统计的知识,但是并不复杂。整个模型就围绕一件事情,如何求后验概率,即:P(Y=ck∣X=x)P(Y=c_{k}|X=x)P(Y=ck∣X=x)定睛一看,也就是个条件概率,求在X=x的条件下,Y=ck的概率,说白了,就是对于给定的x,求出它属于Y=ck这一类的概率。...
2020-01-16 16:17:00 1417
原创 一文读懂K近邻(KNN)模型
1 算法描述K近邻模型是个十分通俗易懂的模型,给定一个点,我们只要找到和他在空间中最近的K个点,这K个点中出现次数最多的类别,就是这个点的分类,具体算法如下:如果了解其他机器学习模型朋友肯定会发现,这个模型和我们以往学到的机器学习模型有些区别,其没有决策函数也没有条件概率分布, 只有一个决策规则:y=argmaxcj∑xi∈Nk(x)I(yi=cj)y = arg \max_{c_{j}...
2020-01-14 15:42:31 1323 1
原创 一文读懂感知机模型
很多人第一次学习机器学习,就学的是感知机(Perceptron)这个模型。感知机模型虽然简单,但是包含的方法确实后面很多模型常常用到的,例如神经网络、支持向量机等。本文就用最简单的方式,从该模型背景出发,对其原理进行推导1. 问题提出假设在二维空间中我们有一些散点,这些散点属于不同的类,那我们该怎么样区分这些点呢?或者说按照什么样的规则分开这些点呢?我们首先想到的应该是画一条线来进行区分。如...
2020-01-13 20:38:07 1579
原创 哈工大《机器学习理论与算法》课程总结
1.总结1.ID3算法ID3算法:输入:例子集(正例、反例);输出:决策树从树的根结点开始,每次都用“最好的属性”划分结点,直到所有结点只含一类例子为止。不相关属性问题:预处理,预剪枝不充足属性:即属性值全相同,无法确定类别,则哪一类例子多选哪一类。未知属性值:1.最通常值法;2.决策树法:未知属性作为类,类作为属性;3.贝叶斯方法:给予可能值一个概率 4. 按比例将未知属性值...
2020-01-09 10:17:29 2823 10
原创 生成对抗网络(GAN)论文原文详解
最近在学习生成对抗网络的相关知识,首先接触到的当然是Ian Goodfellow的原始论文,文章中作者很简要的阐明了GAN的基本算法,同时也给出该算法可行的理论证明。该模型通俗点说可以利用已有的数据对模型进行训练,训练完成后,该网络能够自动的生成与原始数据相似的数据。举例来说,我给网络投喂一些...
2019-12-13 16:44:48 15881 1
原创 LFR算法初探——一种用于测试社区检测算法的基准图的生成算法
本文基于《Benchmark graphs for testing community detection algorithms》一文,文章名翻译过来就是测试社区检测算法的基准图,作者是Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi,因此也叫做LFR算法。该算法如题目表达的一样,是为了生成一个能够用于测试社区检测算法优劣的网...
2019-11-27 18:27:39 3299 29
哈工大-高级算法设计与分析课程ppt-2020最新版
2020-04-30
哈工大《机器学习理论与算法》课程PPT
2020-01-09
LFR算法源码,已经编译好,可在win下运行
2019-11-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人