动态规划基础题(第3题):AC累积和

标签

  • 动态规划、累积和

合集

  • 【动态规划】累积和

题目地址

C - GeT AC

  • https://atcoder.jp/contests/abc122/tasks/abc122_c

问题描述

A, C, G, T からなる長さ N の文字列 S が与えられます。以下の Q 個の問いに答えてください。

  • 問 i (1≤iQ): 整数 l i _i i, r i _i i(1 ≤ \leq l i _i i < r i _i i ≤ \leq N が与えられる。S の先頭から l i _i i 文字目から r i _i i 文字目までの (両端含む) 部分文字列を考える。この文字列に AC は部分文字列として何回現れるか。

注記

文字列 T の部分文字列とは、T の先頭と末尾から 0 文字以上を取り去って得られる文字列です。

例えば、ATCODER の部分文字列には TCO, AT, CODER, ATCODER, ``(空文字列) が含まれ、AC は含まれません。

制約

  • 2 ≤ \leq N ≤ \leq 10 5 ^5 5
  • 1 ≤ \leq Q ≤ \leq 10 5 ^5 5
  • S は長さ N の文字列である。
  • SS の各文字は A, C, G, T のいずれかである。
  • 1 ≤ \leq l$_i < r < r <r_i$ ≤ \leq N

入力

入力は以下の形式で標準入力から与えられる。

N Q
S
l1 r1
:
lQ rQ

出力

Q行出力せよ。i行目に問 iへの答えを出力すること。


入力例 1

8 3
ACACTACG
3 7
2 3
1 8

出力例 1

2
0
3
  • 問 1: S の先頭から 3 文字目から 7 文字目までの部分文字列は ACTAC です。この文字列に AC は部分文字列として 2 回現れます。
  • 問 2: S の先頭から 2 文字目から 3 文字目までの部分文字列は CA です。この文字列に AC は部分文字列として 0 回現れます。
  • 問 3: S の先頭から 1 文字目から 8 文字目までの部分文字列は ACACTACG です。この文字列に AC は部分文字列として 3 回現れます。

思路

  • 累积和问题
  • 时间复杂度:O(Q)

题解

小码匠

void coder_solution() {
    // 提升cin、cout效率
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, q;
    cin >> n >> q;
    string s;
    cin >> s;
    vector<int> vi(n + 1);
    vi[0] = 0;
    long long C, P;
    for(int i = 1; i <= n; i++) {
        if(s[i - 1] == 'A' && s[i] == 'C') {
            vi[i + 1] = vi[i] + 1;
            continue;
        }
        vi[i + 1] = vi[i];
    }
    int L, R;
    for(int i = 0; i < q; i++) {
        cin >> L >> R;
        cout << vi[R] - vi[L]<< endl;
    }
}

参考题解

int N, Q; string S;
int ok[101010], sm[101010];
//---------------------------------------------------------------------------------------------------
void _main() {
	cin >> N >> Q >> S;
	rep(i, 0, N - 1) if (S[i] == 'A' and S[i + 1] == 'C') ok[i] = 1;
	sm[0] = ok[0];
	rep(i, 1, N) sm[i] = sm[i - 1] + ok[i];
 
	rep(q, 0, Q) {
		int L, R; cin >> L >> R; L--; R--;
 
		int ans = sm[R-1];
		if (L) ans -= sm[L - 1];
		
		printf("%d\n", ans);
	}
}

参考题解2

  • 实现思路大同小异,模版这块代码先收藏了
#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
#define FI first
#define SE second
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
 
 
int main()
{
    lint N;
    cin >> N;
    lint Q;
    cin >> Q;
    string S;
    cin >> S;
    vector<lint> l(Q);
    vector<lint> r(Q);
    REP(i, Q){ cin >> l[i]; cin >> r[i]; }
 
    vector<int> s(N + 1);
    REP(i, N - 1) s[i + 1] = s[i] + (S[i] == 'A' and S[i + 1] == 'C');
 
    REP(i, Q)
    {
        cout << s[r[i] - 1] - s[l[i] - 1] << endl;
    }
    return 0;
}

待补知识点

  • 继续学习累积和问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码匠和老码农

喜欢作者

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值