机器学习
Coder_py
这个作者很懒,什么都没留下…
展开
-
机器学习实战:基于Scikit-Learn和TensorFlow—第五章笔记
机器学习实战:基于Scikit-Learn和TensorFlow—第五章笔记 支持向量机 支持向量机(简称SVM)是一个功能强大并且全面的机器学习模型,它能够执行线性或非线性分类、回归,甚至是异常值检测任务。 线性SVM分类 选取鸢尾花数据集作为实验数据 from sklearn import datasets iris = datasets.load_iris() X = iris["dat...原创 2020-01-03 14:21:16 · 575 阅读 · 0 评论 -
机器学习实战:基于Scikit-Learn和TensorFlow—第四章笔记
机器学习实战:基于Scikit-Learn和TensorFlow—第四章笔记 一、学习目标 之前用了那么多的机器学习的模型,但是它们各自的训练算法在很大程度上还是一个黑匣子,我们对对系统内部的实现机制一无所知。所以本章就要研究下这些厉害的机器学习模型内部究竟是如何运作的呢? 二、线性回归 线性模型就是对输入特征加权求和,再加上一个我们称为偏置项(也称为截距项)的常数,以此进行预测。 公式1-1:线...原创 2019-12-26 15:58:10 · 517 阅读 · 0 评论 -
机器学习实战:基于Scikit-Learn和TensorFlow---第三章笔记
机器学习实战:基于Scikit-Learn和TensorFlow—第三章笔记 一、学习目标 第三章将从分类的角度来进行学习,并且引入很多对于检验分类效果的性能指标。 二、数据集 本章将使用MNIST数据集,这是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。 这边我是先把数据下载到本地来进行加载使用了。 from sklearn.datasets imp...原创 2019-12-22 16:17:56 · 518 阅读 · 0 评论 -
机器学习实战:基于Scikit-Learn和TensorFlow---第二章笔记
机器学习实战:基于Scikit-Learn和TensorFlow—第二章笔记 一、学习目标 以加州住房价格的数据集作为数据源,来进行构建一个完整的机器学习的项目。 二、完整的处理流程 2.1、目标问题 拿到数据集,搭建机器学习的项目,我们肯定是希望从这个数据中分析出什么结果。所以我们的目标就是:根据数据集,对一个区域的房价中位数进行预测。你肯定知道这是一个典型的监督式学习任务(因为已经给出了标记的...原创 2019-12-21 19:18:15 · 917 阅读 · 0 评论 -
朴素贝叶斯的理解
朴素贝叶斯的理解 一、背景 朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于模型,对给定的输入x,利用贝叶斯定理求出后验概率的最大的输出y。 二、贝叶斯定理 2.1、贝叶斯定理公式 P(A∣B)=P(A)P(B/A)P(B) P(A|B) = \frac {P(A)P(B/A)}{P(B)}P(A∣B)=P(...原创 2019-12-14 19:40:20 · 516 阅读 · 0 评论 -
我的机器学习之路-KNN算法
我的机器学习之路-KNN算法 一、 K近邻算法 k-近邻(k-Nearest Neighbour,简称KNN)是一种基本分类与回归方法,属于是有监督学习中的分类算法。 二、 算法介绍 2.1 思路 k近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决...原创 2019-12-04 19:38:37 · 429 阅读 · 0 评论