python手写kmeans算法

本文详细介绍了如何从零开始用Python实现KMeans聚类算法,内容包括算法的基本原理及步骤,通过实例展示了如何在没有依赖库的情况下完成聚类过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

kmean聚类是最基础和常见的算法,工程上使用比较常见,spark, sklearn都有实现,本文手写实现kmeans

#!/usr/bin/python
import sys
import random
import math

def create_rand_points(max_x, max_y, count):
    """Create count points (0-x), (0-y).

    """
    points = []
    for i in range(0, count):
        x = random.randint(0, max_x)
        y = random.randint(0, max_y)
        points.append([x,y])
    return points

def get_start_k_points(points, k):
    """Get k start points.

    """
    if k > len(points):
        return None
    random.shuffle(points)
    return points[0:k]

def get_nearest_point_index(point, central_points):
    """
    """
    min_dis = 2000000000
    index = 0
    for i in range(0, len(central_points)):
        dis = 0.0
        for j in range(0, len(point)):
            dis += (point[j]-central_points[i][j]) * (point[j]-central_points[i][j])
        if math
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值