卢卡斯定理

定律定义

Lucas定理:我们令n=sp+q , m=tp+r .(q ,r ≤p)

那么:

(在编程时你只要继续对

调用Lucas定理即可。

代码可以递归的去完成这个过程,其中递归终点为t = 0

时间O(logp(n)*p):)

推导过程

Lucas定理证明:

首先你需要这个算式:

,其中f > 0&& f < p,然后

(1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xp) s· (1 + x) q(mod p)
  


  

(modp)

所以得(1 + x) sp+q

(mod p)
  

我们求左边(1 + x)sp+q 中的

的系数为:

求右边公式中的

为:

通过观察你会发现当且仅当i = t , j = r ,能够得到

的系数,即
  

 

所以

 

代码:

求C(n, m) mod 10007

int Lucas (ll n , ll m , int p) 
{
  return m == 0 ? 1 : 1ll*comb (n%p , m%p , p) * Lucas (n/p,m/p,p)%p ;
}
//comb()函数中,因为q , r < p , 所以这部分暴力完成即可。
//C++求C(n, m) mod 10007    版本二 要求p z在100000左右
ll f[N];
void init(int p) 
{       //f[n] = n!
    f[0] = 1;
    for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
} 
ll pow_mod(ll a, ll x, int p)
{
    ll ret = 1;
    while (x)
        {
        if (x & 1)  ret = ret * a % p;
        a = a * a % p;
        x >>= 1;
    }
    return ret;
}
  
ll Lucas(ll n, ll k, int p)        //C (n, k) % p
{
     ll ret = 1;
     while (n && k) 
        {
        ll nn = n % p, kk = k % p;
        if (nn < kk) return 0;  //inv (f[kk]) = f[kk] ^ (p - 2) % p
        ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
        n /= p, k /= p;
     }
     return ret;
}
int main(void)
{
    init (p);
    printf ("%I64d\n", Lucas (n, m, p));
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值