定律定义
Lucas定理:我们令n=sp+q , m=tp+r .(q ,r ≤p)
那么:
(在编程时你只要继续对
调用Lucas定理即可。
代码可以递归的去完成这个过程,其中递归终点为t = 0 ;
时间O(logp(n)*p):)
推导过程
Lucas定理证明:
首先你需要这个算式:
,其中f > 0&& f < p,然后
(1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xp) s· (1 + x) q(mod p)
(modp)
所以得(1 + x) sp+q
(mod p)
我们求左边(1 + x)sp+q 中的
的系数为:
求右边公式中的
为:
通过观察你会发现当且仅当i = t , j = r ,能够得到
的系数,即
所以
代码:
求C(n, m) mod 10007
int Lucas (ll n , ll m , int p)
{
return m == 0 ? 1 : 1ll*comb (n%p , m%p , p) * Lucas (n/p,m/p,p)%p ;
}
//comb()函数中,因为q , r < p , 所以这部分暴力完成即可。
//C++求C(n, m) mod 10007 版本二 要求p z在100000左右
ll f[N];
void init(int p)
{ //f[n] = n!
f[0] = 1;
for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
}
ll pow_mod(ll a, ll x, int p)
{
ll ret = 1;
while (x)
{
if (x & 1) ret = ret * a % p;
a = a * a % p;
x >>= 1;
}
return ret;
}
ll Lucas(ll n, ll k, int p) //C (n, k) % p
{
ll ret = 1;
while (n && k)
{
ll nn = n % p, kk = k % p;
if (nn < kk) return 0; //inv (f[kk]) = f[kk] ^ (p - 2) % p
ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
n /= p, k /= p;
}
return ret;
}
int main(void)
{
init (p);
printf ("%I64d\n", Lucas (n, m, p));
return 0;
}