1、 如果 p 是素数, a, p 互素,(a, p) = 1, 则费马小定理 a^(p - 1) = 1 (mod p)
a^(p - 2) 是 a 模 p 的逆元。 通过逆元求 组合数 c(m, n) 模p 的值
组合公式:
c(m, n) = n! / (m! * (n - m)!), 1 <= n < p , 1 <= m < p
c(m, n) % p = (n! % p) * {(1 / (m! * (n - m)!)) % p}
2、数组 f[x] 表示 x! (mop p) 的值
g(x) 表示 (x!)^-1 (mop p) 的值
那么 c(m, n)(mod p) = f[n] * g[m] * g[n - m] (mod p)
3、 套用卢卡斯定理
#include <cstdio>
#include <cstdlib>
#include <cstring>
typedef long long ll;
using namespace std;
const ll MaxN = 100010;
ll f[MaxN];
ll g[MaxN]; // 存逆元
ll t, n, m, p;
ll quick_pow(ll a, ll k)
{
ll res = 1;