洛谷 P3807 【模板】卢卡斯定理/Lucas 定理

本文介绍了卢卡斯定理在模运算中的应用,特别是在计算组合数c(m, n)模素数p时的角色。首先,回顾了费马小定理和逆元的概念,接着利用逆元计算组合数模p的值。接着,通过数组f[x]存储x!模p的值和g(x)表示x!的模p逆元,公式化c(m, n) mod p = f[n] * g[m] * g[n - m] (mod p)。最后,讨论了如何套用卢卡斯定理来解决更复杂的模运算问题。" 125581726,14574405,SpringBoot的@ConditionalOnBean注解详解,"['spring boot', 'java', '自动配置', 'bean']
摘要由CSDN通过智能技术生成

1、 如果 p 是素数, a, p 互素,(a, p) = 1, 则费马小定理 a^(p - 1) = 1 (mod p)
a^(p - 2) 是 a 模 p 的逆元。 通过逆元求 组合数 c(m, n) 模p 的值
组合公式:
c(m, n) = n! / (m! * (n - m)!), 1 <= n < p , 1 <= m < p
c(m, n) % p = (n! % p) * {(1 / (m! * (n - m)!)) % p}
2、数组 f[x] 表示 x! (mop p) 的值
g(x) 表示 (x!)^-1 (mop p) 的值
那么 c(m, n)(mod p) = f[n] * g[m] * g[n - m] (mod p)
3、 套用卢卡斯定理

#include <cstdio>
#include <cstdlib>
#include <cstring>
typedef long long ll;
using namespace std;
const ll MaxN = 100010;
ll f[MaxN];
ll g[MaxN];	// 存逆元
ll t, n, m, p;

ll quick_pow(ll a, ll k)
{
   
	ll res = 1;
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值