CodeForces 712C Memory and De-Evolution

本文探讨了一种有趣的问题:如何通过改变等边三角形的一边长度,使其最终变为另一个等边三角形,同时保持每一步操作后三角形仍然存在。文章提供了一个巧妙的算法解决方案,通过贪心策略,使得每次改变尽可能地最大化,从而达到最少的操作次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

outputstandard output
Memory is now interested in the de-evolution of objects, specifically triangles. He starts with an equilateral triangle of side length x, and he wishes to perform operations to obtain an equilateral triangle of side length y.

In a single second, he can modify the length of a single side of the current triangle such that it remains a non-degenerate triangle (triangle of positive area). At any moment of time, the length of each side should be integer.

What is the minimum number of seconds required for Memory to obtain the equilateral triangle of side length y?

Input
The first and only line contains two integers x and y (3 ≤ y < x ≤ 100 000) — the starting and ending equilateral triangle side lengths respectively.

Output
Print a single integer — the minimum number of seconds required for Memory to obtain the equilateral triangle of side length y if he starts with the equilateral triangle of side length x.

Examples
input
6 3
output
4
input
8 5
output
input
22 4
output
6
Note
In the first sample test, Memory starts with an equilateral triangle of side length 6 and wants one of side length 3. Denote a triangle with sides a, b, and c as (a, b, c). Then, Memory can do (6,6,6)→(6,6,3)→(6,4,3)→(3,4,3)→(3,3,3).

In the second sample test, Memory can do (8,8,8)→(8,8,5)→(8,5,5)→(5,5,5).

In the third sample test, Memory can do:
(22,22,22)→(7,22,22)→(7,22,16)→(7,10,16)→(7,10,4)→(7,4,4)→(4,4,4).

题意

给你一个各边都为x的等边三角形,你有一种魔法,在每一秒钟可以改变当前三角形一边的长度,使之变成一个新的三角形,问你最少需要多少秒?

分析

  1. 每一秒钟都可以改变当前三角形一边的长度,那我是不是可以只花一秒就将某一边x减少到y了?这当然是不可能的。题目要求要构成一个新的三角形,三角形三边必须要满足两边之和大于第三边
  2. 既然不能一下减少y,那减少到多少了?不好判断。
  3. 那就逆推吧。从x减少到y无法判断,但是从y增加到x可以知道啊?让某一边尽可能大,并且还能和其余两边构成三角形就行了。
  4. 求最少时间,贪心,使改变量尽可能多,每次改变最小边,改变到多少? 最小边 = 剩下两边长度之和 - 1 。

Source Code

#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
    int x,y,i;
    int s[4];
    cin>>x>>y;
    s[0]=s[1]=s[2]=y;
    for(i=0; s[0]<x||s[1]<x||s[2]<x; i++)
        s[i%3]=s[(i+1)%3]+s[(i+2)%3]-1;
    cout<<i<<endl;
    return 0;
}

代码摘抄于别人,写的挺巧妙的,利用求余实现了循环,实现了循环也就实现了排序

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值