算法流程
1.使用结构数组存储所有的边的信息。
2.对所有边按照边的权值进行从小到大排序。
3.根据Kruskal算法,来自不同的分支,找到尽可能小权值的边将其联通起来。也就是说,排序后遍历每一条边,如果这条边的两个结点来自不同分支(采用并查集方式来记录同一分支),则可以使用这条边将两个分支联通。
注意点
1. 并查集记录该节点分支的根时,要注意优化findRoot()函数。
2. 使用结构体记录每一条边,按照边的权值排序。
3. 合并时遍历所有的边,但实际上MST只会有n-1条边。
4. 合并时注意是对分支的根合并。
连接计算机
描述
教学楼有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。
当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。
现在由你负责连接这些计算机,任务是使任意两台计算机都连通(不管是直接的或间接的)。
输入
费用以矩阵的形式给出,代表连接第i台与第j台计算机的费用。
第一行为整数n(2≤n≤100),表示计算机的数目。此后的n行,每行n个整数。
输出
一个整数,表示最小的连接费用。
样例
输入
3
0 1 2
1 0 1
2 1 0
输出
2
#include<iostream>
#include<algorithm>
using namespace std;
int map[110][110];
int Tree[110];
struct E{
int a,b;
int cost;
bool operator < (const E &a) const
{
return cost<a.cost;
}
};
E edges[6000];
int findRoot(int x)
{
if(Tree[x]==-1) return x;
else{
int temp = findRoot(Tree[x]);
Tree[x] = temp;
return temp;
}
}
int main(void)
{
int n;int count=0;
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&map[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
E tmp;
tmp.a=i;tmp.b=j;
tmp.cost=map[i][j];
edges[count]=tmp;
count++;
}
}
sort(edges,edges+count);
for(int i=1;i<=n;i++) Tree[i]=-1;
int ans=0;
for(int i=0;i<count;i++){
int x = edges[i].a;
int y = edges[i].b;
int c = edges[i].cost;
x = findRoot(x);
y = findRoot(y);
if(x!=y){
ans+=c;
Tree[x]=y;
}
}
printf("%d\n",ans);
return 0;
}
还是畅通工程
题目描述
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
输入描述
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
输出描述
对每个测试用例,在1行里输出最小的公路总长度。
输入
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
输出
3
5
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 6001
using namespace std;
int Tree[101];
struct E{
int A,B;
int cost;
bool operator < (const E &e) const{
return cost<e.cost;
}
};
int findRoot(int x){
if(Tree[x]==-1) return x;
else return findRoot(Tree[x]);
}
E edge[6001];
int main(void){
int n,m;
while(cin>>n){
if(n==0) break;
for(int i=1;i<=n*(n-1)/2;i++){
cin>>edge[i].A>>edge[i].B>>edge[i].cost;
}
for(int i=1;i<=n;i++){
Tree[i]=-1;
}
sort(edge+1,edge+1+n*(n-1)/2);//排序所有的边
int sum=0;
for(int i=1;i<=n*(n-1)/2;i++){
int na = edge[i].A;
int nb = edge[i].B;
int c = edge[i].cost;
na = findRoot(na);
nb = findRoot(nb);//利用并查集来记录它们是否在一个分支
if(na!=nb){
Tree[na]=nb;//没有在同一个分支则合并
sum += c;
}
}
cout<<sum<<endl;
}
return 0;
}