datawhale算法学习

回溯算法是解决组合问题的一种有效方法,采用“走不通就回退”的思路。通过递归和状态管理,可以探索所有可能的解决方案。以下是回溯算法的总结和实现步骤:

1. 回溯算法概述

  • 基本思想:通过选择和撤销选择的方式,系统地搜索所有可能的解。
  • 步骤
    1. 选择元素:从可选列表中选择一个元素。
    2. 递归搜索:基于选择的元素继续进行搜索,直到找到一个完整解或无法继续。
    3. 撤销选择:在回到上一步后,尝试其他可能的选择。

2. 全排列示例

对于数组 [1, 2, 3] 的全排列:

  • 首先选择 1,然后在剩下的 [2, 3] 中继续选择。
  • 接着选择 2,形成排列 [1, 2, 3],完成一次递归。
  • 撤销选择,尝试其他组合,得到 [1, 3, 2],依此类推。

3. 回溯算法的通用模板

以下是回溯算法的通用实现模板:

res = []    # 存放所有符合条件的结果
path = []   # 存放当前的选择结果

def backtracking(nums):
    if 遇到边界条件:
        res.append(path[:])  # 保存当前结果
        return

    for i in range(len(nums)):
        if 满足约束条件:
            path.append(nums[i])  # 选择当前元素
            backtracking(nums)     # 递归
            path.pop()             # 撤销选择

backtracking(nums)

4. 回溯算法三步走

  • 明确选择:使用决策树帮助理清搜索过程。
  • 明确终止条件:确定递归停止的条件。
  • 将决策树和终止条件翻译成代码:包括定义回溯函数、书写主体和明确递归终止条件。

5. 示例代码:全排列

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        res = []
        path = []

        def backtracking():
            if len(path) == len(nums):
                res.append(path[:])
                return

            for i in range(len(nums)):
                if nums[i] not in path:
                    path.append(nums[i])
                    backtracking()
                    path.pop()

        backtracking()
        return res

总结

回溯算法通过系统地尝试所有可能性,能够有效解决组合、排列等问题。理解其基本思想和实现步骤,有助于在实际问题中应用回溯算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值