Python数据分析之Pandas

Python中的pandas模块进行数据分析:

1、数据结构简介:DataFrame和Series
2、数据索引index
3、利用pandas查询数据
4、利用pandas的DataFrames进行统计分析
5、利用pandas实现SQL操作
6、利用pandas进行缺失值的处理
7、利用pandas实现Excel的数据透视表功能
8、多层索引的使用

1. 数据结构简介

       在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame。Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到。

1.1 Series的创建

序列的创建主要有三种方式:

1)通过一维数组创建序列

2)通过字典的方式创建序列

3)通过DataFrame中的某一行或某一列创建序列

这部分内容我们放在后面讲,因为下面就开始将DataFrame的创建。

1.2 DataFrame的创建

数据框的创建主要有三种方式:

1)通过二维数组创建数据框

2)通过字典的方式创建数据框

以下以两种字典来创建数据框,一个是字典列表,一个是嵌套字典。

3)通过数据框的方式创建数据框

2. 数据索引index

        细致的朋友可能会发现一个现象,不论是序列也好,还是数据框也好,对象的最左边总有一个非原始数据对象,这个是什么呢?不错,就是我们接下来要介绍的索引。 在我看来,序列或数据框的索引有两大用处,一个是通过索引值或索引标签获取目标数据,另一个是通过索引,可以使序列或数据框的计算、操作实现自动化对齐,下面我们就来看看这两个功能的应用。

2.1 通过索引值或索引标签获取数据

如果不给序列一个指定的索引值,则序列自动生成一个从0开始的自增索引。可以通过index查看序列的索引:

现在我们为序列设定一个自定义的索引值:

序列有了索引,就可以通过索引值或索引标签进行数据的获取:

千万注意:如果通过索引标签获取数据的话,末端标签所对应的值是可以返回的!在一维数组中,就无法通过索引标签获取数据,这也是序列不同于一维数组的一个方面。

2.2 自动化对齐

如果有两个序列,需要对这两个序列进行算术运算,这时索引的存在就体现的它的价值了—自动化对齐.

        由于s5中没有对应的g索引,s6中没有对应的e索引,所以数据的运算会产生两个缺失值NaN。注意,这里的算术结果就实现了两个序列索引的自动对齐,而非简单的将两个序列加总或相除。对于数据框的对齐,不仅仅是行索引的自动对齐,同时也会自动对齐列索引(变量名)

       数据框中同样有索引,而且数据框是二维数组的推广,所以其不仅有行索引,而且还存在列索引,关于数据框中的索引相比于序列的应用要强大的多,这部分内容将放在数据查询中讲解。

3. 利用pandas查询数据

这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集、指定行、指定列等。我们先导入一个student数据集.

查询数据的前5行

查询数据的前末尾5行

查询指定的行

student.loc[[0,2,4,5,7]] #这里的loc索引标签函数必须是中括号[]

查询指定的列

student[['Name','Height','Weight']].head() #如果多个列的话,必须使用双重中括号

也可以通过loc索引标签查询指定的列

student.loc[:,['Name','Height','Weight']].head()

查询出所有12岁以上的女生信息

student[(student['Sex']=='F') & (student['Age']>12)]

查询出所有12岁以上的女生姓名、身高和体重

student[(student['Sex']=='F') & (student['Age']>12)][['Name','Height','Weight']]

上面的查询逻辑其实非常的简单,需要注意的是,如果是多个条件的查询,必须在&(且)或者|(或)的两端条件用括号括起来。

 

参考链接https://www.cnblogs.com/nxld/p/6058591.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值