《算法导论(第4版)》阅读笔记:p83-p85

《算法导论(第4版)》学习第 18 天,p83-p85 总结,总计 3 页。

一、技术总结

1. Strassen algorithm(施特拉森算法)

2.矩阵

(1)矩阵表示法

If we wish to refer to matrices without specifically writing out all their entries, we will use uppercase A, B, C, and so on. In general, aᵢⱼ will denote the entry of the matrix A that is in the ith row and the jth column. We will refer to this entry as the (i, j) entry of A. We will sometimes shorten this to A = (aᵢⱼ). Similarly, a matrix B may be referred to as (bᵢⱼ), a matrix C as (cᵢⱼ), and so on.

(2)dense matrix(密集矩阵) & sparse matrix(稀疏矩阵)、

Generally, we’ll assume that the matrices are dense, meaning that most of the n² entries are not 0, as opposed to sparse, where most of the n² entries are 0 and the nonzero entries can be stored more compactly than in an n × n array.

二、英语总结(生词:0)

无。

关于英语的注解同步更新汇总到 https://github.com/codists/English-In-CS-Books 仓库。

三、其它

今天没有什么想说的。

四、参考资料

1. 编程

(1) Thomas H. Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford Stein,https://book.douban.com/subject/35591269/

2. 英语

(1) Etymology Dictionary:https://www.etymonline.com

(2) Cambridge Dictionary:https://dictionary.cambridge.org

欢迎搜索及关注:编程人(a_codists)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值