混合背包问题

该篇文章介绍了解决旅行者背包问题的算法,涉及01背包、完全背包和多重背包的混合情况,通过动态规划计算在给定容量下物品的最大价值。
摘要由CSDN通过智能技术生成

混合背包

时间限制:1秒        内存限制:128M

题目描述

一个旅行者有一个最多能装V公斤的背包,现在有n件物品,它们的重量分别是  W1,W2,...,Wn ,它们的价值分别为 C 1 , C 2 ,..., C n 。有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

输入描述

第一行:二个整数,M(背包容量,M≤200),N(物品数量,N≤30); 第2..N+1行:每行三个整数 Wi,Ci,Pi ,前两个整数分别表示每个物品的重量,价值,第三个整数若为0,则说明此物品可以购买无数件,若为其他数字,则为此物品可购买的最多件数( P i )。

输出描述

仅一行,一个数,表示最大总价值。

样例

输入

10  3
2  1  0
3  3  1
4  5  4

输出

11

提示

选第一件物品1件和第三件物品2件。

#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=20010;
int n,m,cnt;
int v[N],w[N],f[N];
int main() {
	cin>>m>>n;
	for(int i=1; i<=n; i++) {
		int a,b,s;
		cin>>a>>b>>s;
		int k=1;
		if(s==0){
			s=m/a;//s=0x7fffffff
		}
		while(k<=s) {
			cnt++;
			v[cnt]=a*k;
			w[cnt]=b*k;
			s-=k;
			k*=2;
		}
		if(s>0) {
			cnt++;
			v[cnt]=a*s;
			w[cnt]=b*s;
		}
	}
	n=cnt;
	for(int i=1; i<=n; i++) {
		for(int j=m; j>=v[i]; j--) {
			f[j]=max(f[j],f[j-v[i]]+w[i]);

		}
	}
	cout<<f[m]<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值