混合背包
时间限制:1秒 内存限制:128M
题目描述
一个旅行者有一个最多能装V公斤的背包,现在有n件物品,它们的重量分别是 W1,W2,...,Wn ,它们的价值分别为 C 1 , C 2 ,..., C n 。有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
输入描述
第一行:二个整数,M(背包容量,M≤200),N(物品数量,N≤30); 第2..N+1行:每行三个整数 Wi,Ci,Pi ,前两个整数分别表示每个物品的重量,价值,第三个整数若为0,则说明此物品可以购买无数件,若为其他数字,则为此物品可购买的最多件数( P i )。
输出描述
仅一行,一个数,表示最大总价值。
样例
输入
10 3 2 1 0 3 3 1 4 5 4
输出
11
提示
选第一件物品1件和第三件物品2件。
#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=20010;
int n,m,cnt;
int v[N],w[N],f[N];
int main() {
cin>>m>>n;
for(int i=1; i<=n; i++) {
int a,b,s;
cin>>a>>b>>s;
int k=1;
if(s==0){
s=m/a;//s=0x7fffffff
}
while(k<=s) {
cnt++;
v[cnt]=a*k;
w[cnt]=b*k;
s-=k;
k*=2;
}
if(s>0) {
cnt++;
v[cnt]=a*s;
w[cnt]=b*s;
}
}
n=cnt;
for(int i=1; i<=n; i++) {
for(int j=m; j>=v[i]; j--) {
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
return 0;
}